Thermal conductivity of single-layer MoS2: A comparative study between 1H and 1T′ phases

2018 ◽  
Vol 103 ◽  
pp. 294-299 ◽  
Author(s):  
Chao Zhang ◽  
Cuixia Wang ◽  
Timon Rabczuk
2019 ◽  
Vol 21 (24) ◽  
pp. 12977-12985 ◽  
Author(s):  
Jieren Song ◽  
Zhonghai Xu ◽  
Xiaodong He ◽  
Yujiao Bai ◽  
Linlin Miao ◽  
...  

The thermal conductivities of single-layer BC3 (SLBC) sheets and their responses to environmental temperature, vacancy defects and external strain have been studied and compared with those of single-layer C3N (SLCN) sheets by molecular dynamics simulations.


2020 ◽  
Vol 6 (4) ◽  
pp. 723-728
Author(s):  
Jingyu Li ◽  
Peng-Fei Liu ◽  
Chi Zhang ◽  
Xiaobo Shi ◽  
Shujuan Jiang ◽  
...  

Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


2018 ◽  
Vol 40 (S2) ◽  
pp. E1840-E1849 ◽  
Author(s):  
Muhammad Razlan Zakaria ◽  
Muhammad Helmi Abdul Kudus ◽  
Hazizan Md Akil ◽  
Mohd Zharif Mohd Thirmizir ◽  
Muhammad Fadhirul Izwan Abdul Malik ◽  
...  

2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


2019 ◽  
Vol 45 (17) ◽  
pp. 21193-21199 ◽  
Author(s):  
Sarabjit Singh ◽  
Vajinder Singh ◽  
Sweety Kumari ◽  
A. Udayakumar ◽  
V.V. Bhanu Prasad

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1652
Author(s):  
Nan Yang ◽  
Haifeng Ji ◽  
Xiaoxia Jiang ◽  
Xiongwei Qu ◽  
Xiaojie Zhang ◽  
...  

Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.


Sign in / Sign up

Export Citation Format

Share Document