Maternal supraphysiological hypercholesterolemia is associated with increased levels of lipid peroxidation and an increased antioxidant capacity of maternal HDL, but not with changes in PON1 activity

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e33
Author(s):  
Claudette Cantin ◽  
Susana Contreras-Duarte ◽  
Gabriela Arenas ◽  
Lorena Carvajal ◽  
Andrea Leiva
Author(s):  
Masoud Nasiri ◽  
Saja Ahmadizad ◽  
Mehdi Hedayati ◽  
Tayebe Zarekar ◽  
Mehdi Seydyousefi ◽  
...  

Abstract. Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber’s ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Taslima Nigar ◽  
Annekathryn Goodman ◽  
Shahana Pervin

Abstract Purpose Over the past several decades, research has suggested reactive oxygen species act as cofactors for cervical cancer development. The aim of this study is to evaluate the antioxidant and lipid peroxidation status in cervical cancer patients in Bangladesh. Methods From December 2017 to 2018, a cross-sectional observational study was conducted on 50 cervical cancer patients and 50 controls. Plasma levels of lipid peroxidation and total antioxidant capacity were measured. The Student’s t test was used for statistical analysis. P values less than 0.05 were taken as a level of significance. Results There was a significant reduction in total antioxidant levels in patients with cervical cancer, 972.77 ± 244.22 SD µmol equivalent to ascorbic acid/L, compared to normal controls, 1720.13 ± 150.81 SD µmol equivalent to ascorbic acid/L (P < 0.001). Levels of lipid peroxidation were found to be significantly higher in cervical cancer, 7.49 ± 2.13 SD µmol/L, than in women without cervical cancer, 3.28 ± 0.58 SD µmol/L (P < 0.001). The cervical cancer patients had significantly higher levels of oxidative stress index (0.83 ± 0.31) in comparison to controls (0.19 ± 0.04) (P < 0.001). Conclusion There was an increased oxidative stress index due to imbalance between lipid peroxidation generation and total antioxidant capacity in cervical cancer patients. Further studies are needed to explore the role of oxidative stress as a cofactor for cervical carcinogenesis.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Kristina Jonušaite ◽  
Petras Rimantas Venskutonis ◽  
Gines Benito Martínez-Hernández ◽  
Amaury Taboada-Rodríguez ◽  
Gema Nieto ◽  
...  

The antioxidant capacity of oregano (OEO) and clove (CLEO) essential oils and black elderberry (Sambucus nigra) flower extract (SNE) were compared with butylhydroxytoluene (BHT) regarding its protection against lipid peroxidation and microbial counts in salmon burgers stored at 4 °C for 14 days and after cooking. The content of total phenols was 5.74% in OEO, 2.64% in CLEO and 2.67 % in the SNE. The total phenolic content and the antioxidant capacity were significantly higher (p < 0.05) for SNE and OEO. Both essential oils showed a similar IC50 and inhibition percentage of lipid peroxidation to BHT. The combination of OEO and SNE reduced 29% of thiobarbituric acid reactive substances (TBARS), while BHT reduced 31% of TBARS generated during refrigeration storage in salmon burgers in relation to the control sample without antioxidants. Additionally, the microbial counts after 14 days of refrigeration were the lowest in burgers when the combination of OEO and SNE was used. This study concludes that OEO and SNE can be used as inhibitors of lipid oxidation in salmon products and as natural candidates to replace commonly used synthetic antioxidants and antimicrobials in these food products.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 923
Author(s):  
Yuan Yuan ◽  
Yanyu Zhai ◽  
Jingjiong Chen ◽  
Xiaofeng Xu ◽  
Hongmei Wang

Kaempferol has been shown to protect cells against cerebral ischemia/reperfusion injury through inhibition of apoptosis. In the present study, we sought to investigate whether ferroptosis is involved in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal injury and the effects of kaempferol on ferroptosis in OGD/R-treated neurons. Western blot, immunofluorescence, and transmission electron microscopy were used to analyze ferroptosis, whereas cell death was detected using lactate dehydrogenase (LDH) release. We found that OGD/R attenuated SLC7A11 and glutathione peroxidase 4 (GPX4) levels as well as decreased endogenous antioxidants including nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and superoxide dismutase (SOD) in neurons. Notably, OGD/R enhanced the accumulation of lipid peroxidation, leading to the induction of ferroptosis in neurons. However, kaempferol activated nuclear factor-E2-related factor 2 (Nrf2)/SLC7A11/GPX4 signaling, augmented antioxidant capacity, and suppressed the accumulation of lipid peroxidation in OGD/R-treated neurons. Furthermore, kaempferol significantly reversed OGD/R-induced ferroptosis. Nevertheless, inhibition of Nrf2 by ML385 blocked the protective effects of kaempferol on antioxidant capacity, lipid peroxidation, and ferroptosis in OGD/R-treated neurons. These results suggest that ferroptosis may be a significant cause of cell death associated with OGD/R. Kaempferol provides protection from OGD/R-induced ferroptosis partly by activating Nrf2/SLC7A11/GPX4 signaling pathway.


2010 ◽  
Vol 24 (9) ◽  
pp. 2545-2550 ◽  
Author(s):  
Şükrü Serdar Balc ◽  
Nilsel Okudan ◽  
Hamdi Pepe ◽  
Hakk Gökbel ◽  
Serkan Revan ◽  
...  

2011 ◽  
Vol 396-398 ◽  
pp. 52-55 ◽  
Author(s):  
Ming Xiong Tan ◽  
Yan Cheng Liu ◽  
Xu Jian Luo ◽  
Dong Qing Li

The total alkaloids (TAE) were obtained from the fruits of Evodia rutaecarpa (Juss.) Benth. The antioxidant activities of TAE towards the inhibitory effect on 2, 2’-diphenyl-1-picrylhydrazyl (DPPH) free radical, total antioxidant capacity, and inhibition on lipid peroxidation were investigated. TAE was found that the total antioxidant capacity and inhibitory lipid peroxidation are superior to synthetic antioxidant 2, 6-di-ter-butyl-4-methylphenol (BHT), but scavenging activity on DPPH radical is lower than that of BHT at the same condition.


Sign in / Sign up

Export Citation Format

Share Document