scholarly journals Analysis of DNA methylation in potato tuber in response to light exposure during storage

Author(s):  
Yujie Xiong ◽  
Xiao Liu ◽  
Qian You ◽  
Lei Han ◽  
Jiang Shi ◽  
...  
Author(s):  
Altug Didikoglu ◽  
Nisha Nair ◽  
Andrew C. Robinson ◽  
Federico Roncaroli ◽  
Neil Pendleton ◽  
...  

Abstract Perinatal light exposure predisposes towards health and behaviour in adulthood. Season of birth is associated with psychiatric, allergic, cardiovascular and metabolic problems. It has been proposed that early-life environmental light disrupts the development of biological rhythms which, in turn, influence later-life health. However, the mechanisms linking perinatal seasonal light to later-life biological rhythm and health in humans are unknown. In this study, we investigated the association between season of birth and epigenome-wide DNA methylation of two postmortem human brain regions (16 hypothalamus, 14 temporal cortex). We did not find statistically significant differences at the whole epigenome level, either because we lacked statistical power or that no association exists. However, when we examined 24 CpG sites that had the highest significance or differential methylation, we identified regions which may be associated with circadian rhythm entrainment, cholinergic neurotransmission and neural development. Amongst methylation of the core clock genes, we identified that hypothalamus Neuronal PAS Domain Protein 2 (NPAS2) gene has hypermethylated regions in long photoperiod-born individuals. In addition, we found nominal associations between season of birth and genes linked to chronotype and narcolepsy. Season of birth-related brain DNA methylation profile was different than a previously reported blood methylation profile, suggesting a tissue-specific mechanism of perinatal light programming. Overall, we are the first to analyse the relationship between season of birth and human brain DNA methylation. Further studies with larger sample sizes are required to confirm an imprinting effect of perinatal light on the circadian clock.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 920 ◽  
Author(s):  
Zhang ◽  
Zuo ◽  
Chen ◽  
Kang ◽  
Qin

Steroidal glycoalkaloids (SGAs), which are widely produced by potato, even in other Solanaceae plants, are a class of potentially toxic compounds, but are beneficial to host resistance. However, changes of the other metabolic process along with SGA accumulation are still poorly understood and researched. Based on RNA sequencing (RNA-seq) and bioinformatics analysis, the global gene expression profiles of potato variety Helan 15 (Favorita) was investigated at four-time points during light exposure. The data was further verified by using quantitative Real-time PCR (qRT-PCR). When compared to the control group, 1288, 1592, 1737, and 1870 differentially expressed genes (DEGs) were detected at 6 h, 24 h, 48 h, and 8 d, respectively. The results of both RNAseq and qRT-PCR showed that SGA biosynthetic genes were up-regulated in the potato tuber under light exposure. Functional enrichment analysis revealed that genes related to PS light reaction and Protein degradation were significantly enriched in most time points of light exposure. Additionally, enriched Bins included Receptor kinases, Secondary metabolic process in flavonoids, Abiotic stress, and Biotic stress in the early stage of light exposure, but PS Calvin cycle, RNA regulation of transcription, and UDP glucosyl and glucoronyl transferases in the later stage. Most of the DEGs involved in PS light reaction and Abiotic stress were up-regulated at all four time points, whereas DEGs that participated in biotic stresses were mainly up-regulated at the later stage (48 h and 8 d). Cis-element prediction and co-expression assay were used to confirm the expressional correlation between genes that are responsible for SGA biosynthesis and disease resistance. In conclusion, the expressions of genes involved in PS light reaction, Abiotic stress, and Biotic stress were obviously aroused during the accumulation of SGAs induced by light exposure. Moreover, an increased defense response might contribute to the potato resistance to the infection by phytopathogenic microorganisms.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


1996 ◽  
Vol 97 (4) ◽  
pp. 708-718 ◽  
Author(s):  
Shu-xia Li ◽  
Allan M. Showalter
Keyword(s):  

1997 ◽  
Vol 101 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Jose C. Ramalho ◽  
Thos L. Pons ◽  
Henri W. Groeneveld ◽  
M. Antonieta Nunes

2020 ◽  
Vol 158 (3) ◽  
pp. S50-S51
Author(s):  
Suresh Venkateswaran ◽  
Varun Kilaru ◽  
Hari Somineni ◽  
Jason Matthews ◽  
Jeffrey Hyams ◽  
...  

1997 ◽  
Vol 78 (05) ◽  
pp. 1408-1414 ◽  
Author(s):  
Frank Roesken ◽  
Martin Ruecker ◽  
Brigitte Vollmar ◽  
Nicole Boeckel ◽  
Eberhard Morgenstern ◽  
...  

SummaryThe alteration of rheological blood properties as well as deterioration of vascular perfusion conditions and cell-cell interactions are major determinants of thrombus formation. Herein, we present an experimental model which allows for quantitative in vivo microscopic analysis of these determinants during both thrombus formation and vascular recanalisation. The model does not require surgical preparation procedures, and enables for repeated analysis of identical microvessels over time periods of days or months, respectively. After i.v. administration of FITC-dextran thrombus formation was induced photochemically by light exposure to individual arterioles and venules of the ear of ten anaesthetised hairless mice. In venules, epiillumination induced rapid thrombus formation with first platelet deposition after 0.59 ± 0.04 min and complete vessel occlusion within 7.48 ±1.31 min. After a 24-h time period, 75% of the thrombosed venules were found recanalised. Marked leukocyte-endothelial cell interaction in those venules indicated persistent endothelial cell activation and/or injury, even after an observation period of 7 days. In arterioles, epi-illumination provoked vasomotion, while thrombus formation was significantly (p <0.05) delayed with first platelet deposition after 2.32 ± 0.22 min and complete vessel occlusion within 20.07 ±3.84 min. Strikingly, only one of the investigated arterioles was found recanalised after 24 h, which, however, did not show leukocyte-endothelial cell interaction. Heparin (300 U/kg, i.v.) effectively counteracted the process of thrombus formation in this model, including both first platelet deposition and vessel occlusion. We conclude that the model of the ear of the hairless mouse allows for distinct in vivo analysis of arteriolar and venular thrombus formation/ recanalisation, and, thus, represents an interesting tool for the study of novel antithrombotic and thrombolytic strategies, respectively.


2019 ◽  
Author(s):  
Christine Dinh ◽  
Juan Young ◽  
Olena Bracho ◽  
Rahul Mittal ◽  
Denise Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document