Diets high in monounsaturated and polyunsaturated fatty acids decrease fatty acid synthase protein levels in adipose tissue but do not alter other markers of adipose function and inflammation in diet-induced obese rats

2014 ◽  
Vol 90 (2-3) ◽  
pp. 77-84 ◽  
Author(s):  
Jennifer E. Enns ◽  
Danielle Hanke ◽  
Angela Park ◽  
Peter Zahradka ◽  
Carla G. Taylor
2011 ◽  
Vol 67 (4) ◽  
pp. 595-604 ◽  
Author(s):  
Alfonso Alexander-Aguilera ◽  
Silvia Berruezo ◽  
Guillermo Hernández-Diaz ◽  
Ofelia Angulo ◽  
Rosamaria Oliart-Ros

2015 ◽  
Vol 31 (4) ◽  
pp. 543-550 ◽  
Author(s):  
T. Popova ◽  
J. Nakev ◽  
Y. Marchev

The aim of this study was to provide information on the fatty acid profile of different adipose depots - subcutaneous (upper and inner backfat layers) and intramuscular (m. Longissimus dorsi) in East Balkan pigs. The animals were reared in free-range conditions and slaughtered at an average live weight of 107?1.65kg. The results of the study showed that the various adipose tissues in pigs have different lipid metabolism and hence differ in their fatty acid composition. Intramuscular fat had significantly higher content of the saturated C16:0 and C18:0 (P<0.001), as well as the C16:1 (P<0.001) than the subcutaneous fat. In regards to the content of the polyunsaturated fatty acids, the latter displayed considerably higher content of both C18:2 and C18:3 (P<0.001) in comparison to the intramuscular fat in m. Longissimus dorsi. The differences between the subcutaneous and intramuscular adipose tissue in the individual fatty acids determined the similar trend of change in the total content of saturated and polyunsaturated fatty acids. Significant differences between the backfat layers were detected for C16:1, C18:0 and C18:3 (P<0.001). Stearic acid (C18:0) displayed higher content of the inner, while both C16:1 and C18:3 had higher proportion in the outer backfat layer in the East Balkan pigs. Except for C20:2, the long chain polyunsaturated n-6 and n-3 fatty acids had significantly higher proportions in the intramuscular fat, however no differences were determined between the two backfat layers.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 438 ◽  
Author(s):  
Cecilia Colson ◽  
Rayane Ghandour ◽  
Océane Dufies ◽  
Samah Rekima ◽  
Agnès Loubat ◽  
...  

Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are involved in an inflammatory response. Adipose tissue inflammatory background is a key factor of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity, modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation in ω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of 30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin content. Diet enrichment with an ω3 polyunsaturated fatty acid induced an increase in the oxylipins derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites did not activate macrophages but participated in macrophage polarization by inflammatory stimuli. In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory cytokine secretion.


2013 ◽  
pp. 153-161 ◽  
Author(s):  
P. JANOVSKÁ ◽  
P. FLACHS ◽  
L. KAZDOVÁ ◽  
J. KOPECKÝ

Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) exert beneficial effects on health and they could help to prevent development of obesity and associated metabolic disorders. In our previous studies in mice fed high-fat (cHF; ~60 % calories as fat) diet and maintained at 20 °C, dietary LC n-3 PUFA could counteract accretion of body fat, without inducing mitochondrial uncoupling protein 1 (UCP1) in adipose tissue, suggesting that the anti-obesity effect was not linked to adaptive (UCP1-mediated) thermogenesis. To exclude a possible dependence of the anti-obesity effect on any mechanism inducible by cold, experiments were repeated in mice maintained at thermoneutrality (30 °C). Male C57BL/6J mice were fed either cHF diet, or cHF diet supplemented with LC n-3 PUFA, or standard diet for 7 months. Similarly as at 20 °C, the LC n-3 PUFA supplementation reduced accumulation of body fat, preserved lipid and glucose homeostasis, and induced fatty acid re-esterification in epididymal white adipose tissue. Food consumption was not affected by LC n-3 PUFA intake. Our results demonstrated anti-obesity metabolic effect of LC n-3 PUFA, independent of cold-induced thermogenesis and they suggested that induction of fatty acid re-esterification creating a substrate cycle in white fat, which results in energy expenditure, could contribute to the anti-obesity effect.


2006 ◽  
Vol 290 (1) ◽  
pp. E87-E91 ◽  
Author(s):  
Joseph F. Bower ◽  
Julianne M. Davis ◽  
Enhui Hao ◽  
Hisham A. Barakat

We have reported that the rate of de novo triglyceride (TG) synthesis by omental, but not subcutaneous, adipose tissue was higher in African-American women (AAW) than in Caucasian women (CAW). The purpose of this study was to explore the potential mechanisms underlying this increase. Toward that end, we determined the activities of key enzymes in the pathway of TG synthesis, the rates of uptake of fatty acids by adipocytes, mRNA and protein levels of the fatty acid-transporting proteins FAT/CD36 and FATP, and mRNA and protein levels of PPARγ in omental fat of AAW and CAW. The results showed 1) no difference in the activity of phosphofructokinase, glycerol-3-phosphate dehydrogenase, or diacylglycerol acyltransferase; 2) a higher rate of fatty acid uptake by adipocytes of the AAW; 3) an increase in the mRNA and protein levels of CD36 and FATP4 in the fat of the AAW; and 4) an increase in the mRNA and protein levels of PPARγ, which can stimulate the expression of CD36 and FATP. These results suggest that the increase in the transport of fatty acid, which is mediated by the overexpression of the transport proteins in the omental adipose tissue of the AAW, might contribute to the higher prevalence of obesity in AAW.


2003 ◽  
Vol 90 (3) ◽  
pp. 507-513 ◽  
Author(s):  
J. M. Hsu ◽  
S. T. Ding

Polyunsaturated fatty acids (FA) regulate genes involved in lipid metabolism. The effects of polyunsaturated FA on the transcription factor adipocyte determination and differentiation-dependent factor (ADD) 1 and fatty acid synthase (FAS) mRNA in differentiating porcine adipocytes were measured using a stromal vascular cell culture system. Porcine stromal vascular cells were isolated from subcutaneous adi-pose tissues and plated in Dulbecco's modified Eagle's medium (DMEM)–nutrient mixture F-12 Ham (F-12) plus fetal bovine serum (100 ml/l) for 24 h. Then cells were differentiated in DMEM–F12 plus insulin, hydrocortisone and transferrin without or with polyunsaturated FA at 6·25, 25·00 or 100·00 μm. The ADD1 mRNA was decreased by 100·00 μm-arachidonic acid, 6·25 to 100·00 μm-docosahexaenoic acid or cis-9,trans-11-conjugated linoleic acid. The polyunsaturated FA reduced the transcription rate of FAS, but not of ADD1. All three polyunsaturated FA accelerated degradation of ADD1 and FAS mRNA to reduce the abundance of ADD1 and FAS mRNA. Results also showed that polyunsaturated FA inhibit the ADD1 expression, not only of mRNA concentration, but also of mature ADD1 protein concentration, suggesting an overall reduction of ADD1 function by polyunsaturated FA. Our present experiments demonstrate that polyunsaturated FA regulate the gene expression of ADD1 and enzymes involved in lipid metabolism in porcine adipocytes.


1999 ◽  
Vol 82 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Prity Pugo-Gunsam ◽  
Philippe Guesnet ◽  
Anwar Hussein Subratty ◽  
Dev Anand Rajcoomar ◽  
Chantal Maurage ◽  
...  

The fatty acid compositions of white adipose tissue, colostrum and mature milk triacylglycerols from Mauritian (n 13) and French (n 15) women were analysed and compared in order to highlight cultural differences in dietary intakes and their influence on milk fatty acid composition. Erythrocyte phosphatidylethanolamine and phosphatidylcholine fatty acid compositions were also investigated in their term infants, breast-fed over a period of 6 weeks. Fatty acid composition (g/100 g) of all samples was determined by GLC and anthropometric measurements were assessed in the two populations at birth and on day 42. Comparisons of white adipose tissue fatty acid compositions demonstrated lower levels of saturated (23·64 (se 1·54) v. 29·75 (se 0·67), P < 0·01) and monounsaturated (39·44 (se 1·27) v. 54·84 (se 0·75), P < 0·001) fatty acids and higher levels of polyunsaturated fatty acids (n−6 series: 32·47 (se 1·31) v. 14·32 (se 0·47), P < 0·001 and n−3 series: 2·87 (se 0·49) v. 0·80 (se 0·07), P < 0·01) in Mauritian than in French samples respectively. Accordingly, milk fat of the Mauritian women contained higher levels of parent essential fatty acids and their longer-chain derivatives than did milk fat from French women. Higher levels of parent essential fatty acids but lower levels of long-chain polyunsaturated fatty acids were found in erythrocyte phospholipids of Mauritian infants compared with French infants. Infants' erythrocyte arachidonate and docosahexaenoate contents did not correlate with any anthropometric variables at birth or at day 42, neither did they correlate with anthropometric variation over the study period. Our results suggest the lack of a simple relationship between the amount of long-chain polyunsaturated fatty acids in human milk and their accretion in the erythrocyte phospholipids of breast-fed infants when provided concomitantly with high levels of both linoleic and α-linolenic acids in ratios which fall within recommended ranges.


1999 ◽  
Vol 58 (3) ◽  
pp. 593-607 ◽  
Author(s):  
D. Demeyer ◽  
M. Doreau

Beef and dairy products suffer from a negative health image, related to the nature of their lipid fraction. Rumen lipid metabolism involves the presence of saturated lipids in ruminant tissues. Lipolysis, fatty acid biohydrogenation and formation of microbial fatty acids in the rumen and their effects on rumen outflow of fatty acids are discussed. Special emphasis is given to the formation of trans-fatty acids and the possibilities of decreasing biohydrogenation. Small differences in intestinal digestibilities of fatty acids are mentioned, followed by a discussion on transfer of absorbed fatty acids into milk and adipose tissue lipids. The preferential retention of polyunsaturated fatty acids as well as the balance between synthesis and incorporation of fatty acids in tissues is described. Dietary means for the modification of milk fat are listed, with special emphasis on the possibilities for enrichment in polyunsaturated fatty acids and the presence of conjugated linoleic acids. A description of the nature and development of fat depots in beef cattle is followed by a discussion of breed, conformation and feed effects on adipose tissue distribution and fatty acid composition. Special emphasis is given to the very lean Belgian Blue double-muscled breed. The review ends with a consideration of the limits to the modification of ruminant fats, involving considerations of consumer acceptance as well as animal welfare and environmental effects.


Sign in / Sign up

Export Citation Format

Share Document