Differences in transport of fatty acids and expression of fatty acid transporting proteins in adipose tissue of obese black and white women

2006 ◽  
Vol 290 (1) ◽  
pp. E87-E91 ◽  
Author(s):  
Joseph F. Bower ◽  
Julianne M. Davis ◽  
Enhui Hao ◽  
Hisham A. Barakat

We have reported that the rate of de novo triglyceride (TG) synthesis by omental, but not subcutaneous, adipose tissue was higher in African-American women (AAW) than in Caucasian women (CAW). The purpose of this study was to explore the potential mechanisms underlying this increase. Toward that end, we determined the activities of key enzymes in the pathway of TG synthesis, the rates of uptake of fatty acids by adipocytes, mRNA and protein levels of the fatty acid-transporting proteins FAT/CD36 and FATP, and mRNA and protein levels of PPARγ in omental fat of AAW and CAW. The results showed 1) no difference in the activity of phosphofructokinase, glycerol-3-phosphate dehydrogenase, or diacylglycerol acyltransferase; 2) a higher rate of fatty acid uptake by adipocytes of the AAW; 3) an increase in the mRNA and protein levels of CD36 and FATP4 in the fat of the AAW; and 4) an increase in the mRNA and protein levels of PPARγ, which can stimulate the expression of CD36 and FATP. These results suggest that the increase in the transport of fatty acid, which is mediated by the overexpression of the transport proteins in the omental adipose tissue of the AAW, might contribute to the higher prevalence of obesity in AAW.

2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


2014 ◽  
Vol 307 (4) ◽  
pp. E374-E383 ◽  
Author(s):  
Myriam Aouadi ◽  
Pranitha Vangala ◽  
Joseph C. Yawe ◽  
Michaela Tencerova ◽  
Sarah M. Nicoloro ◽  
...  

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


2019 ◽  
Vol 97 (10) ◽  
pp. 952-962
Author(s):  
Claudia Mendez-Garcia ◽  
Afsana Trini ◽  
Veron Browne ◽  
Christopher J. Kochansky ◽  
Laura Pontiggia ◽  
...  

Protein restriction throughout pregnancy and lactation reduces liver triglyceride (TG) content in adult male rat offspring. The study determined the contribution of hepatic lipogenesis to the reduction in liver TG content. Rats received either control or protein-restricted diets throughout pregnancy and lactation. Offspring were sacrificed on day 65. Hepatic fatty acid uptake and de novo fatty acid and TG biosynthesis were similar between control and low-protein (LP) offspring. These results indicate that hepatic lipogenesis cannot mediate the decrease in liver TG content in LP offspring. We then determined whether increased lipid utilization in adipose tissue and muscle was responsible for the decrease in liver TG content. There was suggestive evidence of increased sympathetic nervous system tone in epididymal adipose tissue of LP offspring that increased fatty acid uptake, TG lipolysis, and utilization of fatty acids in mitochondrial thermogenesis. Measurement of similar parameters demonstrated that such alterations do not occur in gastrocnemius muscle, another major lipid-utilizing tissue. Our results suggest that the decrease in liver TG content in LP offspring is likely due to increased diversion of fatty acids to white and brown adipose tissue depots and their enhanced utilization to fuel mitochondrial thermogenesis.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 722 ◽  
Author(s):  
Zhibo Gai ◽  
Tianqi Wang ◽  
Michele Visentin ◽  
Gerd Kullak-Ublick ◽  
Xianjun Fu ◽  
...  

Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.


1984 ◽  
Vol 102 (3) ◽  
pp. 381-386 ◽  
Author(s):  
R. Gross ◽  
P. Mialhe

ABSTRACT To elucidate the hypolipacidaemic effect of insulin in ducks, its action on the uptake of free fatty acids (FFA) by duck hepatocytes was determined. At low doses (10 mu./l) insulin stimulated FFA uptake. This effect was not observed with higher doses of insulin (20, 30 and 50 mu./l). Growth hormone at physiological concentrations and corticosterone (14·4 nmol/l) decreased basal activity, probably by reducing glucose metabolism and consequently α-glycerophosphate (α-GP) supply. Insulin was able to reverse the inhibition induced by GH and corticosterone on both FFA uptake and α-GP production. These results therefore suggest that the hypolipacidaemic effect of insulin may be partly mediated by its action on hepatic FFA uptake. J. Endocr. (1984) 102, 381–386


1996 ◽  
Vol 271 (6) ◽  
pp. G1067-G1073
Author(s):  
C. Elsing ◽  
A. Kassner ◽  
W. Stremmel

Fatty acids enter hepatocytes, at least in part, by a carrier-mediated uptake mechanism. The importance of driving forces for fatty acid uptake is still controversial. To evaluate possible driving mechanisms for fatty acid transport across plasma membranes, we examined the role of transmembrane proton gradients on fatty acid influx in primary cultured rat hepatocytes. After hepatocytes were loaded with SNARF-1 acetoxymethyl ester, changes in intracellular pH (pHi) under different experimental conditions were measured and recorded by confocal laser scanning microscopy. Fatty acid transport was increased by 45% during cellular alkalosis, achieved by adding 20 mM NH4Cl to the medium, and a concomitant paracellular acidification was observed. Fatty acid uptake was decreased by 30% during cellular acidosis after withdrawal of NH4Cl from the medium. Cellular acidosis activates the Na+/H+ antiporter to export excessive protons to the outer cell surface. Inhibition of Na+/H+ antiporter activity by amiloride diminishes pHi recovery and thereby accumulation of protons at the outer surface of the plasma membrane. Under these conditions, fatty acid uptake was further inhibited by 57% of control conditions. This suggests stimulation of fatty acid influx by an inwardly directed proton gradient. The accelerating effect of protons at the outer surface of the plasma membrane was confirmed by studies in which pH of the medium was varied at constant pHi. Significantly higher fatty acid influx rates were observed at low buffer pH. Recorded differences in fatty acid uptake appeared to be independent of changes in membrane potential, because BaCl2 did not influence initial uptake velocity during cellular alkalosis and paracellular acidosis. Moreover, addition of oleate-albumin mixtures to the NH4Cl incubation buffer did not change the observed intracellular alkalinization. In contrast, after cells were acid loaded, addition of oleate-albumin solutions to the recovery buffer increased pHi recovery rates from 0.21 +/- 0.02 to 0.36 +/- 0.05 pH units/min (P < 0.05), indicating that fatty acids further stimulate Na+/H+ antiporter activity during pHi recovery from an acid load. It is concluded that carrier-mediated uptake of fatty acids in hepatocytes follows an inwardly directed transmembrane proton gradient and is stimulated by the presence of H+ at the outer surface of the plasma membrane.


1998 ◽  
Vol 64 (10) ◽  
pp. 3784-3790 ◽  
Author(s):  
Silke Schneider ◽  
Marcel G. Wubbolts ◽  
Dominique Sanglard ◽  
Bernard Witholt

ABSTRACT The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1 ] for the bioconversion of long-chain saturated fatty acids to ω-1, ω-2, and ω-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose,Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system fromP. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadDmutant and therefore unable to consume substrates or products via the β-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 383-383
Author(s):  
Luis Cordero-Monroy ◽  
Carla Taylor ◽  
Peter Zahradka

Abstract Objectives This study was designed to investigate whether unconventional prefoldin RPB5 interactor (URI)-1 mediates hepatic accumulation of triglyceride (TG) in response to a diet with trans-10,cis-12 conjugated linoleic acid (t10,c12 CLA) in lean or genetically obese mice. URI-1 belongs to the prefoldin family of proteins that have been shown to coordinate nutrient availablility by transcriptional regulation of genes involved in glucose and lipid metabolism. Thus, it was hypothesized that URI-1 in liver is involved in increased fatty acid uptake and accumulation leading to fatty liver. Methods C57BL/6 and db/db mice were randomly assigned to two diet groups, control (CTL) and t10,c12 CLA (0.4% w/w). After 4 weeks, the mice were weighed and euthanized. Livers were dissected, weighed and stored at –80°C. Liver lysates were prepared from the tissue for Western blotting to measure hepatic protein levels of URI-1 and FABP1. The amount of lipid in the livers was determined using the LabAssay™ Triglyceride kit, a colorimetric TG assay. Results The liver to body weight ratio of db/db and C57BL/6 mice fed t10,c12 CLA increased by 90% and 52%, respectively, compared to their counterparts fed the CTL diet. Likewise, the hepatic TG concentration (mg TG/mg protein) was increased 38% and 5-fold, respectively, in CLA-fed db/db and C57BL/6 mice compared to CTL db/db and C57BL/6 mice. Western blotting showed that FABP1 levels were approximately 2-fold greater in the db/db t10,c12 CLA group relative to the db/db CTL group, and may contribute to increased fatty acid uptake. Furthermore, URI-1 protein levels were elevated 4-fold in db/db and C57BL6 mice fed t10,c12 CLA compared to their respective CTL groups. Lastly, correlation analysis revealed that URI-1 levels were significantly correlated with hepatic TG concentrations (r = 0.61) and liver/body weight ratio (r = 0.64). Conclusions This study revealed a relationship between hepatic TG accumulation and URI-1, a protein associated with hepatocellular carcinoma (HCC) and cirrhosis. This study provides a basis for in vitro experiments exploring the causative role of URI-1 in propagating hepatic TG accumulation, and ultimately the progression of fatty liver disease to HCC and cirrhosis. Funding Sources University Collaborative Research Project, NSERC Discovery, and University of Manitoba Graduate Enhancement of Tri-Council Stipends.


The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 337-345 ◽  
Author(s):  
Oliver Egeler ◽  
Dana Seaman ◽  
Tony D. Williams

Abstract Western Sandpipers (Calidris mauri) have been previously shown to undergo seasonal changes in the fatty acid composition of their fat stores, even though they do not show the marked seasonal variation in diet common to many migratory passerines. We investigated the effect of dietary fatty acid composition on the fatty acid composition of adipose tissue in captive Western Sandpipers by feeding birds experimental diets with different fatty acid composition. In addition, we determined the effect of total percentage of fat content of the diet (5 vs. 10%) on fatty acid composition of depot fat. Birds maintained normal body mass (24–27 g) throughout all experimental treatments. Most adipose fatty acids were sensitive to dietary manipulation to some extent. Changes in fatty acid composition of the diet had the largest effect on adipose tissue composition for the essential polyunsaturated fatty acid linoleate (18:2), whereas it had the least effect for the monounsaturated fatty acid oleate (18:1). The saturated fatty acid palmitate (16:0) demonstrated an intermediate capacity to alter fatty acid composition of adipose tissue. Total amount of fat in the diet did not influence the effect of diet on fatty acid deposition. Results of dietary manipulations in this study suggest that diet does explain some of the variation in fatty acid composition observed during migration in Western Sandpipers, but that certain fatty acids can be modulated independently of diet (probably through de novo synthesis, postabsorption modification, or both).


Sign in / Sign up

Export Citation Format

Share Document