scholarly journals A rare eicosanoid precursor analogue, sciadonic acid (5Z,11Z,14Z–20:3), detected in vivo in hormone positive breast cancer tissue

Author(s):  
H.G. Park ◽  
J.Y. Zhang ◽  
C. Foster ◽  
D. Sudilovsky ◽  
D.A. Schwed ◽  
...  
2020 ◽  
Author(s):  
Ai Amioka ◽  
Takayuki Kadoya ◽  
Satoshi Sueoka ◽  
Yoshie Kobayashi ◽  
Shinsuke Sasada ◽  
...  

Abstract BackgroundIt was previously reported by us that Wnt5a-positive breast cancer can be classified as estrogen receptor (ER)-positive breast cancer and its prognosis is worse than that of Wnt5a-negative breast cancer. Herein, the molecular mechanisms underlying the poor prognosis of Wnt5a-positive breast cancer patients were examined. MethodsA total of 151 consecutive ER-positive breast cancer patients who underwent resection between January 2011 and February 2014 were enrolled. DNA microarray and pathway analyses were performed conducted using MCF-7 cells stably expressing Wnt5a (MCF-7/Wnt5a(+)). Based on the results, cell viability and drug sensitivity assays as well as mutation analysis , were performed using culture cells and breast cancer tissue. The relationship between Wnt5a and the PI3K–AKT–mTOR signaling pathway was examined.ResultsThe relapse-free survival rate in patients with Wnt5a-positive breast cancer was significantly lower than that in patients with Wnt5a-negative breast cancer ( P = 0.047). DNA microarray data indicated that only the cytochrome P450 (CYP) pathway was significantly upregulated in MCF-7/Wnt5a(+) cells ( P = 0.0440). MCF-7/Wnt5a(+) cells showed reduced sensitivity to the metabolic substrates of CYP, tamoxifen ( P < 0.001), and paclitaxel ( P < 0.001). PIK3CA mutations were unrelated to Wnt5a expression in breast cancer tissue and culture cells.ConclusionsIn ER-positive breast cancer, Wnt5a upregulated the CYP metabolic pathway; additionally, it inhibited the sensitivity to tamoxifen and paclitaxel, which constitute the standard treatment options for ER-positive breast cancer. Wnt5a could be involved in the poor prognosis of ER-positive breast cancer independently of the PI3K–AKT–mTOR signaling pathway.


2020 ◽  
Author(s):  
Ana Luísa Cartaxo ◽  
Marta F Estrada ◽  
Giacomo Domenici ◽  
Ruben Roque ◽  
Fernanda Silva ◽  
...  

Abstract Background Estrogen receptor α (ERα) signaling is a defining and driving event in most breast cancers; ERα is detected in malignant epithelial cells of 75% of all breast cancers (classified as ER-positive breast cancer) and, in these cases, ERα targeting is the main therapeutic strategy. However, the biological determinants of ERα heterogeneity and the mechanisms underlying therapeutic resistance are still elusive, hampered by the challenges in developing experimental models recapitulative of intra-tumoral heterogeneity and in which ERα signaling is sustained. Ex vivo cultures of human breast cancer tissue have been proposed to retain the original tissue architecture, epithelial and stromal cell components and ERα. However, loss of cellularity, viability and ERα expression are well-known culture-related phenomena. Methods BC samples were collected and brought to the laboratory. Then they were minced, enzymatically digested, entrapped in alginate and cultured for one month. The histological architecture, cellular composition and cell proliferation of tissue microstructures were assessed by immunohistochemistry. Cell viability was assessed by measurement of cell metabolic activity. The presence of ERα was accessed by immunohistochemistry and RT-qPCR and its functionality evaluated by challenge with 17−β−estradiol and fulvestrant, respectively. Results We describe a strategy based on entrapment of breast cancer tissue microstructures in alginate capsules and their long-term culture under agitation, successfully applied to tissue obtained from 63 breast cancer patients. After one month in culture, the architectural features of the encapsulated tissue microstructures were similar to the original patient tumors: epithelial, stromal and endothelial compartments were maintained with an average of 97 of cell viability compared to day 0. In ERα-positive cases, fibers of collagen, the main extracellular matrix component in vivo , were preserved. ERα expression was retained at gene and protein levels and response to ERα stimulation and inhibition was observed at the level of downstream targets, demonstrating active ER signaling. Conclusions The proposed model system is a new methodology to study ex vivo breast cancer biology, in particular ERα signaling. It is suitable for interrogating the long-term effects of anti-endocrine drugs in a set-up that closely resembles the original tumor microenvironment, with potential application in pre- and co-clinical assays of ERα-positive breast cancer.


2021 ◽  
Author(s):  
Shiping Li ◽  
Xiaoyi Mi ◽  
Mingfang Sun ◽  
Jie Zhang ◽  
Miaomiao Hao ◽  
...  

Abstract Background: Recently, an increasing number of studies have focused on investigating long non-coding RNAs (lncRNAs) and their role in regulating the progression of various cancer types. However, the biological effects and underlying mechanisms of EGFR-AS1, a typical lncRNA, remain largely unclear in breast cancer.Methods: Differential expression of EGFR-AS1 in breast cancer tissue was analyzed using an integrative database and verified in breast cancer tissue samples and cells via real-time PCR analysis and western blotting analysis. The tumor promoter role of EGFR-AS1 in breast cancer cells was determined through MTT, EDU analysis, colony formation and transwell assays,and the effect of EGFR-AS1 on docetaxel drug sensitivity was examined. We then performed bioinformatic analysis and the dual-luciferase reporter assay to identify the binding sites of EGFR-AS1/miR-149-5p and miR-149-5p/ELP5. Results from western blotting and biological function studies provided insights into whether the EGFR-AS1/miR-149-5p/ELP5 axis regulates breast cancer development in vitro and in vivo. Results: EGFR-AS1 is upregulated in breast cancer tissues and cells and promotes the progression of breast cancer cells both in vitro and in vivo. Moreover, miR-149-5p is downregulated in breast cancer tissues and cell lines. Mechanistically, EGFR-AS1 regulates ELP5 levels by sponging miR-149-5p, thereby affecting cell progression and promoting epithelial-to-mesenchymal transition. Hence, the EGFR-AS1/miR-149-5p/ELP5 axis is involved in breast cancer proliferation, migration, invasion, and resistance to the chemotherapeutic drug, docetaxel, in breast cancer cells. Conclusions: EGFR-AS1 sponges miR-149-5p to affect the expression level of ELP5 ultimately acting as a new tumor promotor in breast cancer. This study provides novel insights into diagnostic and docetaxel-related chemotherapy targets for breast cancer.


2012 ◽  
Vol 20 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Yumi Endo ◽  
Tatsuya Toyama ◽  
Satoru Takahashi ◽  
Nobuyasu Yoshimoto ◽  
Mai Iwasa ◽  
...  

Recent analyses have identified heterogeneity in estrogen receptor α (ERα)-positive breast cancer. Subtypes called luminal A and luminal B have been identified, and the tumor characteristics, such as response to endocrine therapy and prognosis, are different in these subtypes. However, little is known about how the biological characteristics of ER-positive breast cancer are determined. In this study, expression profiles of microRNAs (miRNAs) and mRNAs in ER-positive breast cancer tissue were compared between ERhighKi67lowtumors and ERlowKi67hightumors by miRNA and mRNA microarrays. Unsupervised hierarchical clustering analyses revealed distinct expression patterns of miRNAs and mRNAs in these groups. We identified a downregulation of miR-1290 in ERhighKi67lowtumors. Among 11 miRNAs that were upregulated in ERhighKi67lowtumors, quantitative RT-PCR detection analysis using 64 samples of frozen breast cancer tissue identified six miRNAs (let-7a, miR-15a, miR-26a, miR-34a, miR-193b, and miR-342-3p). We picked up 11 genes that were potential target genes of the selected miRNAs and that were differentially expressed in ERhighKi67lowtumors and ERlowKi67hightumors. Protein expression patterns of the selected target genes were analyzed in 256 ER-positive breast cancer samples by immunohistochemistry: miR-1290 and its putative targets,BCL2, FOXA1, MAPT, andNAT1, were identified. Transfection experiments revealed that introduction of miR-1290 into ER-positive breast cancer cells decreased expression of NAT1 and FOXA1. Our results suggest that miR-1290 and its potential targets might be associated with characteristics of ER-positive breast cancer.


Author(s):  
Lauren Marshall ◽  
Andra Frost ◽  
Tim Fee ◽  
Joel Berry

Drug development platforms such as two-dimensional (2D) in vitro cell culture systems and in vivo animal studies do not accurately predict human in vivo effectiveness of candidate therapeutics [1]. Cell culture systems have limited similarities to primary human cells and tissues as only one cell type is employed and animal studies have a generally limited ability to recapitulate human drug response as different species have differences in metabolism, physiology, and behavior. Mike Leavitt, a former U.S. Secretary of Health and Human Services, has stated that “currently, nine out of ten experimental drugs fail in clinical studies because we cannot accurately predict how they will behave in people based on laboratory and animal studies” [2]. Therefore, this research project is focused on developing an in vitro platform to test candidate therapeutics for more efficacious predictions of human response. We have fabricated a three-dimensional (3D) breast cancer tissue volume containing a vascular network. This vascular network is necessary because current in vitro systems (e.g., rotating bioreactors, suspension of spheroids, and growth on a porous scaffold) are limited in size (1–2 mm) by their absence of micrometer-scale blood flow micro-channels that allow for oxygen and nutrient diffusion into the tissue [4]. The extracellular matrix scaffold has been developed to mimic the native extracellular matrix and includes relevant cell types (e.g., human breast cancer epithelial cells and human breast fibroblasts) along with the prefabricated vascular network (prevascularization). These systems are intended to support long-term growth, recapitulate physiological tissue function, and accurately model response to treatment. It is hypothesized that the development of reproducible tissue volumes will transform breast cancer drug development by providing reliable, cost-effective models that can more accurately predict therapeutic efficacy than current preclinical in vivo and in vitro models.


Sign in / Sign up

Export Citation Format

Share Document