scholarly journals High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity

2018 ◽  
Vol 28 (5) ◽  
pp. 584-589 ◽  
Author(s):  
Yipei Chen ◽  
Xueliang Mu ◽  
Edward Lester ◽  
Tao Wu
Author(s):  
Anna Gołąbiewska ◽  
Micaela Checa-Suárez ◽  
Marta Paszkiewicz-Gawron ◽  
Wojciech Lisowski ◽  
Edyta Raczuk ◽  
...  

Spherical microparticles of TiO2 were synthesized by the ionic liquid-assisted solvothermal method at different reaction time (3, 6, 12 and 24h). The properties of the prepared photocatalysts were investigated by means of UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of phenol degradation was related with a time of the solvothermal synthesis as determined for TiO2_EAN(1:1)_24h sample. Microparticles of TiO2_EAN(1:1)_3h formed during the only 3h of synthesis time revealed really high photoactivity under visible irradiation – 75%. This value increased to 80% and 82% after 12h and 24h, respectively. The photoactivity increase was accompanied by the increase of the specific surface area thus pores size, as well as ability to absorb UV-vis irradiation. The high efficiency of phenol degradation of IL-TiO2 photocatalysts was ascribed to the interaction between the surface of TiO2 and ionic liquid components (carbon and nitrogen).


2021 ◽  
Vol 16 (2) ◽  
pp. 366-373
Author(s):  
A. H. Ruhaimi ◽  
C. C. Teh ◽  
Muhammad Arif Ab Aziz

The utilization of the lime (Citrus aurantifolia) peel as a template can improve the adsorbent’s structural properties, which consequently affect its CO2 uptake capacity. Herein, a mesoporous magnesium oxide (MgO-lime (Citrus aurantifolia) peel template (LPT)) adsorbent was synthesized using an LPT. MgO-LPT demonstrated improved structural properties and excellent CO2 uptake capacity. Moreover, another MgO adsorbent was prepared via thermal decomposition (MgO-TD) for comparison. The prepared adsorbents were characterized by N2 physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis. The CO2 uptake of these adsorbents was under 100% CO2 gas and ambient temperature and pressure conditions. MgO-LPT exhibited a higher Brunauer–Emmett–Teller surface area, Barrett–Joyner–Halenda pore volume, and pore diameter of 23 m2.g−1, 0.142 cm3.g−1, and 24.6 nm, respectively, than those of MgO-TD, which indicated the mesoporous structure of MgO-LPT. The CO2 uptake capacity of MgO-LPT is 3.79 mmol CO2.g−1, which is 15 times that of MgO-TD. This study shows that the application of lime peel as a template for the synthesis of MgO adsorbents is a promising approach to achieve MgO adsorbents with enhanced surface area and thus increased CO2 capture performance. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2016 ◽  
Vol 52 (88) ◽  
pp. 12988-12991 ◽  
Author(s):  
Baishu Zheng ◽  
Hang Wang ◽  
Zhaoxu Wang ◽  
Noriaki Ozaki ◽  
Cheng Hang ◽  
...  

We present here a highly porous rht-type acylamide-functionalized MOF (HNUST-5), which exhibits a high BET surface area of 3643 m2 g−1, large and selective CO2 adsorption at near ambient temperature.


2015 ◽  
Vol 51 (49) ◽  
pp. 10050-10053 ◽  
Author(s):  
Ruth Gomes ◽  
Piyali Bhanja ◽  
Asim Bhaumik

A new triazine functionalized hexagonally ordered covalent organic polymer (TRITER-1) with a high BET surface area (716 m2 g−1) has been synthesized via the Schiff-base condensation reaction between a triamine and terephthaldehyde. TRITER-1 shows an excellent CO2 uptake capacity of 58.9 wt% at 273 K and 5 bar pressure.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75478-75481 ◽  
Author(s):  
Kyoung Chul Park ◽  
Jinhee Cho ◽  
Chang Yeon Lee

A novel porphyrin and pyrene-based conjugated microporous polymer (Por-Py-CMP) was synthesized. It exhibited a high BET surface area (1014 m2 g−1) and excellent capacity for capturing CO2 and I2. It also showed high efficiency for 1O2 generation.


In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


Author(s):  
Reza Yazdanpanah ◽  
Eshagh Moradiyan ◽  
Rouein Halladj ◽  
Sima Askari

Aim and Objective: The research focuses on recent progress in the production of light olefins. Hence, the common catalyst of the reaction (SAPO-34) deactivates quickly because of coke formation, we reorganized the mechanism combining SAPO-34 with a natural zeolite in order to delay the deactivation time. Materials and Methods: The synthesis of nanocomposite catalyst was conducted hydrothermally using experimental design. Firstly, Clinoptilolite was modified using nitric acid in order to achieve nano scaled material. Then, the initial gel of the SAPO-34 was prepared using DEA, aluminum isopropoxide, phosphoric acid and TEOS as the organic template, sources of Aluminum, Phosphor, and Silicate, respectively. Finally, the modified zeolite was combined with SAPO-34's gel. Results: 20 different catalysts due to D-Optimal design were synthesized and the nanocomposite with 50 weight percent of SAPO-34, 4 hours Crystallization and early Clinoptilolite precipitation showed the highest relative crystallinity, partly high BET surface area and hierarchical structure. Conclusion: Different analysis illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to low price of Clinoptilolite, the new catalyst develops the economy of the process. Using this composite, according to formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as deactivation time that was improved.


2020 ◽  
Vol 17 ◽  
Author(s):  
Zubiao Zheng ◽  
Bingbing Han ◽  
Junjun Hu ◽  
Xianwei Li

: The applications of a new supported tribromide reagent (poly(vinylbenzyltrimethylammonium tribromide) resin) were reported. This supported tribromide resin was used as a catalyst in the acetalization and diacetylation of benzaldehydes under mild conditions with high efficiency. The effects of solvents, amount of the supported tribromide resin on the reactions were investigated. Under the optimal conditions, most of acetal and 1,1-diacetates of benzaldehydes were selectively obtained in excellent yields.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2275
Author(s):  
Arafat Toghan ◽  
Mohamed Gouda ◽  
Kamal Shalabi ◽  
Hany M. Abd El-Lateef

Converting low-cost bio-plant residuals into high-value reusable nanomaterials such as microcrystalline cellulose is an important technological and environmental challenge. In this report, nanocrystalline cellulose (NCC) was prepared by acid hydrolysis of macrocrystalline cellulose (CEL). The newly synthesized nanomaterials were fully characterized using spectroscopic and microscopic techniques including FE-SEM, FT-IR, TEM, Raman spectroscopy, and BET surface area. Morphological portrayal showed the rod-shaped structure for NCC with an average diameter of 10–25 nm in thickness as well as length 100–200 nm. The BET surface area of pure CEL and NCC was found to be 10.41 and 27 m2/g, respectively. The comparative protection capacity of natural polymers CEL and NCC towards improving the SS316 alloy corrosion resistance has been assessed during the acid pickling process by electrochemical (OCP, PDP, and EIS), and weight loss (WL) measurements. The outcomes attained from the various empirical methods were matched and exhibited that the protective efficacy of these polymers augmented with the upsurge in dose in this order CEL (93.1%) < NCC (96.3%). The examined polymers display mixed-corrosion inhibition type features by hindering the active centers on the metal interface, and their adsorption followed the Langmuir isotherm model. Surface morphology analyses by SEM reinforced the adsorption of polymers on the metal substrate. The Density Functional Theory (DFT) parameters were intended and exhibited the anti-corrosive characteristics of CEL and NCC polymers. A Monte Carlo (MC) simulation study revealed that CEL and NCC polymers are resolutely adsorbed on the SS316 alloy surface and forming a powerful adsorbed protective layer.


Sign in / Sign up

Export Citation Format

Share Document