Extension of the SIMMER cross-section processing scheme for core degradation analyses of thermal systems

2011 ◽  
Vol 53 (7) ◽  
pp. 867-873
Author(s):  
F. Gabrielli ◽  
A. Rineiski ◽  
W. Maschek
2021 ◽  
Vol 2048 (1) ◽  
pp. 012028
Author(s):  
Lerui Zhang ◽  
Ding She ◽  
Lei Shi ◽  
Richard Chambon ◽  
Alain Hébert

Abstract The XPZ code was previously developed for the lattice physics computation in High Temperature Gas-cooled Reactors (HTGRs), which adopted the multi-group cross section library converted from the existing open-source DRAGON library. In this paper, a new format of multi-group cross section library named XPZLIB has been implemented in XPZ code. XPZLIB is designed in binary and HDF5 formats, including detailed data contents for resonance, transport and depletion calculations. A new data-processing module named XPZR is developed based on NJOY-2016 to generate nuclide dependent XPZLIB from the most recent evaluated nuclear data, and besides, the PyNjoy-2016 system is developed for automatic generation of integrated XPZLIB including a complete set of nuclides. The new generated XPZLIB is presented with the XPZ code. Numerical results demonstrate the accuracy of the new library XPZLIB and the reliability of the data processing scheme. Moreover, the influence of different versions of ENDF/B data is investigated.


Author(s):  
Ehsan Sadeghi ◽  
Majid Bahrami ◽  
Ned Djilali

In many practical instances such as basic design, parametric study, and optimization analysis of thermal systems, it is often very convenient to have closed form relations to obtain the trends and a reasonable estimate of the Nusselt number. However, finding exact solutions for many practical singly-connected cross-sections, such as trapezoidal microchannels, is complex. In the present study, the square root of cross-sectional area is proposed as the characteristic length scale for Nusselt number. Using analytical solutions of rectangular, elliptical, and triangular ducts, a compact model for estimation of Nusselt number of fully-developed, laminar flow in microchannels of arbitrary cross-sections with “H1” boundary condition (constant axial wall heat flux with constant peripheral wall temperature) is developed. The proposed model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The present model is verified against analytical and numerical solutions for a wide variety of cross-sections with a maximum difference on the order of 9%.


2019 ◽  
Vol 9 (2) ◽  
pp. 17-24
Author(s):  
Jakub Lüley ◽  
Branislav Vrban ◽  
Štefan Čerba ◽  
Filip Osuský ◽  
Vladimír Nečas

Stochastic Monte Carlo (MC) neutron transport codes are widely used in various reactorphysics applications, traditionally related to criticality safety analyses, radiation shielding and validation of deterministic transport codes. The main advantage of Monte Carlo codes lies in their ability to model complex and detail geometries without the need of simplifications. Currently, one of the most accurate and developed stochastic MC code for particle transport simulation is MCNP. To achieve the best real world approximations, continuous-energy (CE) cross-section (XS) libraries are often used. These CE libraries consider the rapid changes of XS in the resonance energy range; however, computing-intensive simulations must be performed to utilize this feature. To broaden ourcomputation abilities for industrial application and partially to allow the comparison withdeterministic codes, the CE cross section library of the MCNP code is replaced by the multigroup (MG) cross-section data. This paper is devoted to the cross-section processing scheme involving modified versions of TRANSX and CRSRD codes. Following this approach, the same data may be used in deterministic and stochastic codes. Moreover, using formerly developed and upgraded crosssection processing scheme, new MG libraries may be tailored to the user specific applications. For demonstration of the proposed cross-section processing scheme, the VVER-440 benchmark devoted to fuel assembly and pip-by-pin power distribution was selected. The obtained results are compared with continues energy MCNP calculation and multigroup KENO-VI calculation.


2022 ◽  
Author(s):  

The Water Technology Subcommittee of the ASME Research and Technology Committee on Water and Steam in Thermal Systems, under the leadership of Mr. Robert D. Bartholomew has revised the Consensus on Operating Practices for the Control of Feedwater Boiler Water Chemistry in Modern Industrial Boilers, first published in 1979 with prior revisions published in 1994 and 1998. The task group consisted of a cross section of manufacturers, operators, chemical treatment contractors and consultants involved in the fabrication and operation of industrial and institutional boilers. Members of this group are listed in the acknowledgments. This current document is an expansion and revision of the original, with reordered and modified texts where considered necessary. While significant revisions have been incorporated, it is recognized that there are areas of operating practice not addressed herein. Additional information is available from the references. It is the plan of the ASME Research Committee to continue to review this information, and revise and reissue this document as necessary to comply with advances in boiler design and water conditioning technology.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Author(s):  
Thomas S. Leeson ◽  
C. Roland Leeson

Numerous previous studies of outer segments of retinal receptors have demonstrated a complex internal structure of a series of transversely orientated membranous lamellae, discs, or saccules. In cones, these lamellae probably are invaginations of the covering plasma membrane. In rods, however, they appear to be isolated and separate discs although some authors report interconnections and some continuities with the surface near the base of the outer segment, i.e. toward the inner segment. In some species, variations have been reported, such as longitudinally orientated lamellae and lamellar whorls. In cross section, the discs or saccules show one or more incisures. The saccules probably contain photolabile pigment, with resulting potentials after dipole formation during bleaching of pigment. Continuity between the lamina of rod saccules and extracellular space may be necessary for the detection of dipoles, although such continuity usually is not found by electron microscopy. Particles on the membranes have been found by low angle X-ray diffraction, by low temperature electron microscopy and by freeze-etching techniques.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Sign in / Sign up

Export Citation Format

Share Document