scholarly journals Trophic modeling of the Northern Humboldt Current Ecosystem, Part II: Elucidating ecosystem dynamics from 1995 to 2004 with a focus on the impact of ENSO

2008 ◽  
Vol 79 (2-4) ◽  
pp. 366-378 ◽  
Author(s):  
Marc H. Taylor ◽  
Jorge Tam ◽  
Verónica Blaskovic ◽  
Pepe Espinoza ◽  
R. Michael Ballón ◽  
...  
2019 ◽  
Vol 39 (12) ◽  
pp. 1937-1960 ◽  
Author(s):  
Katarína Merganičová ◽  
Ján Merganič ◽  
Aleksi Lehtonen ◽  
Giorgio Vacchiano ◽  
Maša Zorana Ostrogović Sever ◽  
...  

Abstract Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.


2018 ◽  
Vol 15 (21) ◽  
pp. 6685-6711 ◽  
Author(s):  
Prima Anugerahanti ◽  
Shovonlal Roy ◽  
Keith Haines

Abstract. The dynamics of biogeochemical models are determined by the mathematical equations used to describe the main biological processes. Earlier studies have shown that small changes in the model formulation may lead to major changes in system dynamics, a property known as structural sensitivity. We assessed the impact of structural sensitivity in a biogeochemical model of intermediate complexity by modelling the chlorophyll and dissolved inorganic nitrogen (DIN) concentrations. The model is run at five different oceanographic stations spanning three different regimes: oligotrophic, coastal, and the abyssal plain, over a 10-year timescale to observe the effect in different regions. A 1-D Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration, and Acidification (MEDUSA) ensemble was used with each ensemble member having a combination of tuned function parameterizations that describe some of the key biogeochemical processes, namely nutrient uptake, zooplankton grazing, and plankton mortalities. The impact is quantified using phytoplankton phenology (initiation, bloom time, peak height, duration, and termination of phytoplankton blooms) and statistical measures such as RMSE (root-mean-squared error), mean, and range for chlorophyll and nutrients. The spread of the ensemble as a measure of uncertainty is assessed against observations using the normalized RMSE ratio (NRR). We found that even small perturbations in model structure can produce large ensemble spreads. The range of 10-year mean surface chlorophyll concentration in the ensemble is between 0.14 and 3.69 mg m−3 at coastal stations, 0.43 and 1.11 mg m−3 on the abyssal plain, and 0.004 and 0.16 mg m−3 at the oligotrophic stations. Changing both phytoplankton and zooplankton mortalities and the grazing functions has the largest impact on chlorophyll concentrations. The in situ measurements of bloom timings, duration, and terminations lie mostly within the ensemble range. The RMSEs between in situ observations and the ensemble mean and median are mostly reduced compared to the default model output. The NRRs for monthly variability suggest that the ensemble spread is generally narrow (NRR 1.21–1.39 for DIN and 1.19–1.39 for chlorophyll profiles, 1.07–1.40 for surface chlorophyll, and 1.01–1.40 for depth-integrated chlorophyll). Among the five stations, the most reliable ensembles are obtained for the oligotrophic station ALOHA (for the surface and integrated chlorophyll and bloom peak height), for coastal station L4 (for inter-annual mean), and for the abyssal plain station PAP (for bloom peak height). Overall our study provides a novel way to generate a realistic ensemble of a biogeochemical model by perturbing the model equations and parameterizations, which will be helpful for the probabilistic predictions.


2016 ◽  
Vol 13 (2) ◽  
pp. 425-439 ◽  
Author(s):  
W. Shen ◽  
G. D. Jenerette ◽  
D. Hui ◽  
R. L. Scott

Abstract. The precipitation legacy effect, defined as the impact of historical precipitation (PPT) on extant ecosystem dynamics, has been recognized as an important driver in shaping the temporal variability of dryland aboveground net primary production (ANPP) and soil respiration. How the PPT legacy influences whole ecosystem-level carbon (C) fluxes has rarely been quantitatively assessed, particularly at longer temporal scales. We parameterized a process-based ecosystem model to a semiarid savanna ecosystem in the southwestern USA, calibrated and evaluated the model performance based on 7 years of eddy-covariance measurements, and conducted two sets of simulation experiments to assess interdecadal and interannual PPT legacy effects over a 30-year simulation period. The results showed that decreasing the previous period/year PPT (dry legacy) always increased subsequent net ecosystem production (NEP) whereas increasing the previous period/year PPT (wet legacy) decreased NEP. The simulated dry-legacy impacts mostly increased subsequent gross ecosystem production (GEP) and reduced ecosystem respiration (Re), but the wet legacy mostly reduced GEP and increased Re. Although the direction and magnitude of GEP and Re responses to the simulated dry and wet legacies were influenced by both the previous and current PPT conditions, the NEP responses were predominantly determined by the previous PPT characteristics including rainfall amount, seasonality and event size distribution. Larger PPT difference between periods/years resulted in larger legacy impacts, with dry legacies fostering more C sequestration and wet legacies more C release. The carryover of soil N between periods/years was mainly responsible for the GEP responses, while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the Re responses. These simulation results suggest that previous PPT conditions can exert substantial legacy impacts on current ecosystem C balance, which should be taken into account while assessing the response of dryland ecosystem C dynamics to future PPT regime changes.


2020 ◽  
Author(s):  
Vincent Echevin ◽  
Manon Gévaudan ◽  
Dante Espinoza-Morriberon ◽  
Jorge Tam ◽  
Olivier Aumont ◽  
...  

Abstract. The northern Humboldt current system (NHCS or Peru upwelling system) sustains the world's largest small pelagic fishery. While a nearshore surface cooling has been observed off southern Peru in recent decades, there is still considerable debate on the impact of climate change on the regional ecosystem. This calls for more accurate regional climate projections of the 21st century, using adapted tools such as regional eddy-resolving coupled biophysical models. In this study 3 coarse-grid Earth System Models (ESMs) from the Coupled Model Intercomparison Project (CMIP5) are selected based on their biogeochemical biases upstream of the NHCS and simulations for the so-called business-as-usual RCP8.5 climate scenario are dynamically downscaled at 10 km resolution in the NHCS. The impact of regional climate change on temperature, coastal upwelling, nutrient content, deoxygenation and the planktonic ecosystem is documented. We find that the downscaling approach allows to correct major physical and biogeochemical biases of the ESMs. All regional simulations display a surface warming regardless of the coastal upwelling trends. Contrasted evolutions of the NHCS oxygen minimum zone and enhanced stratification of phytoplankton are found in the coastal region. Whereas trends of downscaled physical parameters are consistent with ESM trends, downscaled biogeochemical trends differ markedly. These results suggest that more realism of the ESMs is needed in the eastern equatorial Pacific to gain robustness in the projection of regional trends in the NHCS.


Author(s):  
Steven McGee ◽  
Jess K. Zimmerman

As the developers of Journey to El Yunque, we have taken a different approach to the process of designing a science curriculum. Rather than start with a specific set of concepts or skills to target as learning outcomes, we started by identifying a specific community of practice to which we sought to connect students. Researchers in the El Yunque rainforest in Puerto Rico have been studying the impact of hurricanes on ecosystem dynamics and have been modeling what the long-term impact would be if changes to the global climate increase the frequency of severe hurricanes. Therefore, hurricane impact became the focal phenomenon for the unit. We modeled the process of investigating hurricane impact after the long-term ecological research practices of researchers in El Yunque. Students begin by investigating the long-term impact of hurricanes on the producers in El Yunque. Next students investigate the long-term impact of hurricanes on various consumers in the rainforest. Finally, students investigate how hurricanes impact the cycling of resources directly as well as indirectly through changes in organisms’ use of those resources in the rainforest. A central tension in the design process is how to coherently represent the spatial relationships between the components of the ecosystem and the temporal dynamics of the individual components. In this paper, we present the evolution of the program as we sought to balance that design tension and build an environment that connects students to the central phenomenon and practices of the community of researchers in El Yunque. 


2020 ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we use a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region is a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C yr-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C yr-1) in the region. Our simulated during-fire emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increases, combustion emission tended to switch from vegetation origin towards soil origin. Burn severity regulates post-fire C dynamics. Low severity fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the opposite trend was found under moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Frederick Toro ◽  
Jaime Alarcón ◽  
Bárbara Toro-Barros ◽  
Gabriela Mallea ◽  
Juan Capella ◽  
...  

Standardized measures of behavior can be powerful tools for assessing the impact of whale watching activities on natural populations of cetaceans. To determine the possible impact of tourism on dolphins between a period without whale watching (1989–1992) (T1) and a period with whale watching (2010–2020) (T2), we examined the changes in the rate of surface behaviors, the group size of long-time resident bottlenose dolphins living in the waters of the Humboldt Current off Chile, and for T2 alone, we compared these differences between two localities, the Punta de Choros and Chañaral de Aceituno coves. We observed a significant decrease in the group size of the resident population and in the frequency of surface events associated with the absence and presence of tourism. For T2, we observed significant differences for the frequency of surface events between the Chañaral de Aceituno and Punta de Choros coves and differences in the frequency of surface events at different hours of the day. This was associated with the number of vessels at the time of the encounter. In addition, we observed for T2 that the most observed instantaneous response of the dolphins to the presence of tourist vessels was to avoid the boats, while approaching the boats was the least observed response. The number of vessels present in each dolphin encounter was the most important variable for our model as it explains these differences. These results show that tourism vessels have a significant impact on dolphin behavior and sociability, while the same population of dolphins have different spatial and temporal responses to different impacts of tourism. Further studies are needed to establish whether changes in the rate of surface behaviors are associated with higher levels of stress in dolphins and with effects on their health and reproductive success in the long term.


2020 ◽  
Author(s):  
Anh Pham ◽  
Takamitsu Ito

<p>Phytoplankton growth in the Indian Ocean is generally limited by macronutrients (nitrogen: N and phosphorus: P) in the north and by micronutrient (iron: Fe) in the south. Increasing anthropogenic atmospheric deposition of N and dissolved Fe (dFe) into the ocean can thus lead to significant responses from marine ecosystems in this ocean basin. Previous modeling studies investigated the impacts of anthropogenic nutrient deposition on the ocean, but their results are uncertain due to incomplete representations of Fe cycling. We use a state-of-the-art ocean ecosystem and Fe cycling model to evaluate the transient responses of ocean productivity and carbon uptake in the Indian Ocean, focusing on the centennial time scale. The model incorporates all major external sources and represents a complicated internal cycling process of Fe, thus showing significant improvements in reproducing observations. Sensitivity simulations show that after a century of anthropogenic deposition, increased dFe stimulates diatoms productivity in the southern Indian Ocean poleward of 50⁰S and the southeastern tropics. Diatoms production weakens in the south of the Arabian Sea due to the P limitation, and diatoms are outcompeted there by coccolithophores and picoplankton, which have a lower P demand. These changes in diatoms and coccolithophores productions alter the balance between the organic and carbonate pumps in the Indian Ocean, increasing the carbon uptake in the south of 50⁰S and the southeastern tropics while decreasing it in the Arabian Sea. Our results reveal the important role of ecosystem dynamics in controlling the sensitivity of carbon fluxes in the Indian Ocean under the impact of anthropogenic nutrient deposition over a centennial timescale.</p>


2020 ◽  
Author(s):  
Bjorn J.M. Robroek ◽  
Magalí Martí ◽  
Bo H. Svensson ◽  
Marc G. Dumont ◽  
Annelies J. Veraart ◽  
...  

AbstractEnviro-climatological changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro-climatological change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community –using amplicon-based sequencing– of three European peatlands that were distinct in enviro-climatological conditions. Bipartite networks were used to construct site-specific plant-prokaryote co-occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant-microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel associations between species that are common and shared across the networks. Turnover in network composition is largely driven by novel interactions between a core community of plants and microorganisms. Taken together our results indicate that plant-microbe associations are context dependent, and that changes in enviro-climatological conditions will likely lead to network rewiring. Integrating turnover in plant-microbe interactions into studies that assess the impact of enviro-climatological change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.


2020 ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we use a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986-2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region is a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C yr-1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C yr-1) in the region. Our simulated during-fire emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increases, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the opposite trend was found under moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.


Sign in / Sign up

Export Citation Format

Share Document