Oxygen barrier enhancement of polymeric foil by sol-gel-derived hybrid silica layers

Polymer ◽  
2020 ◽  
Vol 195 ◽  
pp. 122437
Author(s):  
Kamila Startek ◽  
Jacek Marczak ◽  
Anna Lukowiak
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 577
Author(s):  
Shaokun Hao ◽  
Chuanshuang Hu ◽  
Xiuyi Lin ◽  
Jin Gu ◽  
Hong Yun ◽  
...  

Complexation copper with amine provides an effective strategy for fixation copper in wood, while hydrophobic modification improves the dimensional stability of wood. Thus, a combination of complexation and hydrophobization is expected to enhance the efficiency of copper-based biocides. In this study, hydrophobic hybrid silica gel containing copper amine complexes (MACu) was prepared through an in situ sol-gel process in wood using methyltriethoxysilane (MTES), 3-amino-propyltriethoxysilane (APTES), and copper chloride. The resistance to growth of molds for MACu modified wood (Populus tomentosa) was measured according to ASTM D3273-16. A leaching resistance test was carried out in accordance with AWPA E11-16. The results showed that only Aspergillus niger covered the surface of untreated wood blocks and no mold grew on the MACu surface even after the leaching test. MACu xerogel and MACu wood were further characterized by SEM-EDS, FTIR, and XPS. A possible schematic diagram of the reaction mechanism was proposed to explain the high-efficiency anti-mold performance of MACu wood.


2000 ◽  
Vol 612 ◽  
Author(s):  
Sylvie Acosta ◽  
André Ayral ◽  
Christian Guizard ◽  
Charles Lecornec ◽  
Gérard Passemard ◽  
...  

AbstractPorous silica exhibits attractive dielectric properties, which make it a potential candidate for use as insulator into interconnect structures. A new way of preparation of highly porous silica layers by the sol-gel route was investigated and is presented. The synthesis strategy was based on the use of common and low toxicity reagents and on the development of a simple process without gaseous ammonia post-treatment or supercritical drying step. Defect free layers were deposited by spin coating on 200 mm silicon wafers and characterized. Thin layers with a total porosity larger than 70% and an average pore size of 5 nm were produced. The dielectric constant measured under nitrogen flow on these highly porous layers is equal to ∼ 2.5, which can be compared to the value calculated from the measured porosity, ∼ 1.9. This difference is explained by the presence of water adsorbed on the hydrophilic surface of the unmodified silica.


Silicon ◽  
2020 ◽  
Author(s):  
Xijia Zhao ◽  
Yihan Wang ◽  
Jianhui Luo ◽  
Pingmei Wang ◽  
Peiwen Xiao ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 868
Author(s):  
María Porcel-Valenzuela ◽  
Francisco Huerta ◽  
Emilia Morallón ◽  
Francisco Montilla

Dopamine, norepinephrine, and epinephrine neurotransmitters can be detected by electrochemical oxidation in conventional electrodes. However, their similar chemical structure and electrochemical behavior makes a difficult selective analysis. In the present work, glassy carbon electrodes have been modified with silica layers, which were prepared by electroassisted deposition of sol–gel precursors. These layers were morphologically and compositionally characterized using different techniques, such as field emission scanning electron microscopy (FESEM), TEM, FTIR, or thermogravimetric analysis–mass spectrometry (TG-MS). The affinity of silica for neurotransmitters was evaluated, exclusively, by means of electrochemical methods. It was demonstrated that silica adsorbs dopamine, norepinephrine, and epinephrine, showing different interaction with silica pores. The adsorption process is dominated by a hydrogen bond between silanol groups located at the silica surface and the amine groups of neurotransmitters. Because of the different interaction with neurotransmitters, electrodes modified with silica films could be used in electrochemical sensors for the selective detection of such molecules.


2018 ◽  
Vol 560 ◽  
pp. 225-235 ◽  
Author(s):  
Larissa Brentano Capeletti ◽  
Maria do Carmo Martins Alves ◽  
Mateus Borba Cardoso ◽  
João Henrique Zimnoch dos Santos

2014 ◽  
Vol 2 (45) ◽  
pp. 7955-7963 ◽  
Author(s):  
A. A. El hadad ◽  
V. Barranco ◽  
A. Jiménez-Morales ◽  
G. J. Hickman ◽  
J. C. Galván ◽  
...  

Introduction of phosphorous into hybrid silica sol–gel coatings on Ti6Al4V gives materials demonstrating higher levels of intermolecular condensation and fibrinogen uptake as well as improved in vitro biocompatibility and corrosion protection.


2013 ◽  
Vol 594-595 ◽  
pp. 1009-1014
Author(s):  
S.A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Z. Firuz

Hybrid silica xerogel mesoporous composite was synthesized by a mild temperature acid catalysed sol-gel route where a natural copolymer; sodium alginate (Na-COOH) together with calcium oxide (CaO) powder were incorporated into silica sol precursor prior to gel formation. For this study, bulk xerogels samples were prepared with the amount of silica precursor and the natural copolymer was fixed meanwhile the loading of calcium oxide was varied at 10 and 20 wt%. The monolith silica was also synthesized as control parameter. The preliminary properties were investigated using XRD, FTIR and SEM together with EDS for elemental analysis. The calcium oxide powder used in this study was prepared from calcium hydroxide, CaOH compound, which was previously calcined at 1000°C for 3 hours in normal air. The component of calcium oxide and sodium alginate were found to be uniformly dispersed in matrixes without affecting the cross-linked silica formation. As the presence of the components in the silica matrixes, the synthesized hybrid xerogels were found to be crack-free, structurally amorphous and physically opaque. Furthermore, the hybrid xerogels samples were found to have denser bodies, smoother surface, and decreased in particle sizes and thus might produced less brittleness in nature compared to the monolith xerogels.


Sign in / Sign up

Export Citation Format

Share Document