Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene / short glass fibers / hollow glass beads

2020 ◽  
Vol 85 ◽  
pp. 106418 ◽  
Author(s):  
Gustavo B. Carvalho ◽  
Sebastião V. Canevarolo ◽  
José Alexandrino Sousa
2021 ◽  
pp. 089270572199319
Author(s):  
Gustavo B Carvalho

Ternary hybrid composites of Polypropylene (PP)/Short Glass Fibers (GF)/Hollow Glass Beads (HGB) were prepared using untreated and aminosilane-treated HGB, compatibilized with maleated-PP, and with varying total and relative GF/HGB contents. Static/short-term flexural strength properties data revealed, through lower flexural strength values, that the presence of untreated HGB particles induces to fiber-polymer interfacial decoupling at much higher extent than in the presence of aminosilane-treated HGB particles. This phenomenon is also evident when evaluating the data from displacement-controlled three-point bending fatigue tests. Monitored up to 106 cycles, the analyzed hybrid composites presented distinct performance relative to their fatigue stress relaxation rate: the lower the matrix-reinforcements’ interfacial adhesion, more pronounced the stress relaxation rate as a function of the number of fatigue cycles. Dynamic Mechanical Thermal Analysis (DMTA) results could successfully reveal the hybrid composites behavior at the microstructural level when they were submitted to both static flexural test and fatigue, depending on the degree of interfacial interactions between the polymer matrix of PP and the hybrid reinforcements of GF and HGB (with and without aminosilane surface treatment).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6587
Author(s):  
Lykourgos C. Kontaxis ◽  
Foteini K. Kozaniti ◽  
George C. Papanicolaou

The aim of the present study is to investigate the inclusion geometry and concentration effect on the quasi-static properties of a starch-epoxy hybrid matrix composite. The composites investigated consisted of a starch-epoxy hybrid matrix reinforced with four different glass inclusions such as 3 mm long chopped strands, 0.2 mm long short glass fibers, glass beads (120 μm in diameter) and glass bubbles (65 μm in diameter) at different concentrations. The flexural modulus and the strength of all materials tested were determined using three-point bending tests. The Property Prediction Model (PPM) was applied to predict the experimental findings. The model predicted remarkably well the mechanical behavior of all the materials manufactured and tested. The maximum value of the flexural modulus in the case of the 3 mm long chopped strands was found to be 75% greater than the modulus of the hybrid matrix. Furthermore, adding glass beads in the hybrid matrix led to a simultaneous increase in both the flexural modulus and the strength.


2018 ◽  
Vol 26 (5-6) ◽  
pp. 371-379 ◽  
Author(s):  
Muhammad Shafiq Irfan ◽  
Farhan Saeed ◽  
Yasir Qayyum Gill ◽  
Asif Ali Qaiser

Short fiber–reinforced hybrid polymer (SFRHP) composites were prepared using short glass fibers (SGFs) and short carbon fibers (SCFs) as the reinforcements and vinyl ester resin as the matrix. The flexural properties of all-SGF, all-SCF, and SGF-SCF hybrid composites with controlled fiber orientation were found out experimentally and also predicted using rule of hybrid mixtures. Hand layup technique was used for the preparation of the composites. Composites with different patterns of fiber alignment were prepared and their properties were compared with randomly oriented short fiber composites. The results showed that the flexural performance of samples with longitudinal orientation of the fibers was significantly better than randomly oriented samples for all composites. Synergistic effect of hybridization (positive hybridization) with respect to flexural properties of SFRHP composites was obtained by controlling the orientation of the fibers. It was shown that the hybridization of fibers in the short fiber composites can provide economic savings.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


Sign in / Sign up

Export Citation Format

Share Document