Modulating the rheological response of shear thickening fluids by variation in molecular weight of carrier fluid and its correlation with impact resistance of treated p-aramid fabrics

2020 ◽  
Vol 91 ◽  
pp. 106830
Author(s):  
Aranya Ghosh ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Aaditya Saha ◽  
Fred Avett

Millions of sports and recreation-related injuries occur each year. Different shock-absorbing solutions, such as polyethylene and polyurethane foams, are used in helmets and protective equipment, but one area most sports-gear manufacturers have not explored is the usage of shear thickening fluids (STFs). An STF is a material that is soft under normal conditions but acts rigid when stressed or pressured. STF composites were fabricated and tested with the goal of exploring their viability for use in shock-absorption applications, especially for sports. The role of fabric- and particle-type, particle-to-carrier fluid ratios, nano-particle additives, and the thickness of the composite were studied, and were all hypothesized to have an effect on the impact-resistance of the fabricated STF-composites. Drop-tests were conducted by releasing a 1.1-lb. weight from an electromagnet onto the composites. An impact-force sensor was placed underneath. The weight and height of the drop were chosen to simulate the hardest recorded NFL hit. All hypothesized factors were found to affect impact resistance. The combination of nylon-fabric impregnated by an STF mix of propylene-glycol and silica-nanoparticles, with a cerium-oxide nano-particle additive, displayed better shock-absorption behavior than other fabricated composites. All of the STF-composites also outperformed tested commercial shock-absorption materials despite being thinner and more flexible. These results demonstrate the potential of using STF-impregnated textile fabrics for protective composites for sportswear, as well as for non-sport shock-absorption applications, like in military vests and helmets, and aerospace applications. Further research is necessary to work towards a final product which can be used.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49787-49794 ◽  
Author(s):  
K. Talreja ◽  
I. Chauhan ◽  
A. Ghosh ◽  
A. Majumdar ◽  
B. S. Butola

Kevlar fabrics treated with MTMS modified silica based STF showed better impact energy absorption as compared to APTES modified and control silica based STF treated fabrics, attributed to changes in interactions between fabrics and silica particles.


Author(s):  
Kun Lin ◽  
Jiapeng Qi ◽  
Hongjun Liu ◽  
Minghai Wei ◽  
Hua Yi Peng

Abstract A viscosity model for shear thickening fluids (STFs) based on phenomenological theory is proposed. The model considers three characteristic regions of the typical material properties of STFs: a shear thinning region at low shear rates, followed by a sharp increase in viscosity above the critical shear rate, and subsequently a significant failure region at high shear rates. The typical S-shaped characteristic of the STF viscosity curve is represented using the logistic function, and suitable constraints are applied to satisfy the continuity of the viscosity model. Then, the Levenberg–Marquardt algorithm is introduced to fit the constitutive model parameters based on experimental data. Verification against experimental data shows that the model can predict the viscosity behavior of STF systems composed of different materials with different mass concentrations and temperatures. The proposed viscosity model provides a calculation basis for the engineering applications of STFs (e.g., in increasing impact resistance and reducing vibration).


2016 ◽  
Vol 87 (18) ◽  
pp. 2275-2304 ◽  
Author(s):  
Kadir Bilisik

In this study, the impact resistance of two-dimensional (2D) fabrics and three-dimensional (3D) preforms is explained. These fabrics and preforms include 2D and 3D woven and knitted flat and circular fabrics. Various types of soft/layered structures as well as rigid composite are outlined with some design examples for ballistic and stab threats. The recent developments in nanotubes/nanofibers and shear-thickening fluids (STF) for ballistic fabrics are reviewed. The ballistic properties of single- and multi-layered fabrics are discussed. Their impact mechanism is explained for both soft vest and rigid armor applications. Analytical modeling and computational techniques for the estimation of ballistic properties are outlined. It is concluded that the ballistic/stab properties of fiber-reinforced soft and rigid composites can be enhanced by using high-strength fibers and tough matrices as well as specialized nanomaterials. Ballistic/stab resistance properties were also improved by the development of special fabric architectures. All these design factors are of primary importance for achieving flexible and lightweight ballistic structures with a high ballistic limit.


2016 ◽  
Vol 17 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Abhijit Majumdar ◽  
Bhupendra S. Butola ◽  
Ankita Srivastava ◽  
Debarati Bhattacharjee ◽  
Ipsita Biswas ◽  
...  

2017 ◽  
Vol 88 (7) ◽  
pp. 812-832 ◽  
Author(s):  
Rajkishore Nayak ◽  
Ian Crouch ◽  
Sinnappoo Kanesalingam ◽  
Jie Ding ◽  
Ping Tan ◽  
...  

Since the invention of small arms ammunition, the human torso has required protection from hand-gun bullets, and today’s civil and military personnel are regularly clad in soft body armor systems to cope with these threats. However, increasingly, the threat spectrum has widened to include a plethora of both edged and pointed weapons. Over the past two decades in particular, this has required development of either specific soft armors to defeat that particular threat, or the development of multi-threat vests that can resist both hand-gun bullets and knife and spike attacks. In this review, we provide more details about the various material combinations that are used to defeat a knife or spike, since these armor materials are a lot different from the conventional aramid fabrics, and numerous, widely-different solutions are being pursued. The penetration mechanisms associated with the various forms of attack—stabbing and slashing—are discussed, as well as the use of new fibers, shear thickening fluids, and nano-materials in developing these body armor systems.


2019 ◽  
Vol 11 (3) ◽  
pp. 340-378 ◽  
Author(s):  
Dakshitha Weerasinghe ◽  
Damith Mohotti ◽  
Jeremy Anderson

Soft armour consisting of multi-layered high-performance fabrics are a popular choice for personal protection. Extensive work done in the last few decades suggests that shear thickening fluids improve the impact resistance of woven fabrics. Shear thickening fluid–impregnated fabrics have been proven as an ideal candidate for producing comfortable, high-performance soft body armour. However, the mechanism of defeating a projectile using a shear thickening fluid–impregnated multi-layered fabric is not fully understood and can be considered as a gap in the research done on the improvement of soft armour. Even though considerable progress has been achieved on dry fabrics, limited studies have been performed on shear thickening fluid–impregnated fabrics. The knowledge of simulation of multi-layered fabric armour is not well developed. The complexity in creating the geometry of the yarns, incorporating friction between yarns and initial pre-tension between yarns due to weaving patterns make the numerical modelling a complex process. In addition, the existing knowledge in this area is widely dispersed in the published literature and requires synthesis to enhance the development of shear thickening fluid–impregnated fabrics. Therefore, this article aims to provide a comprehensive review of the current methods of modelling shear thickening fluid–impregnated fabrics with a critical analysis of the techniques used. The review is preceded by an overview of shear thickening behaviour and related mechanisms, followed by a discussion of innovative approaches in numerical modelling of fabrics. A novel state-of-the-art means of modelling shear thickening fluid–impregnated fabrics is proposed in conclusion of the review of current methods. A short case study is also presented using the proposed approach of modelling.


Sign in / Sign up

Export Citation Format

Share Document