Postharvest ethanol and hot water treatments of table grapes to control gray mold

2004 ◽  
Vol 34 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Ozgur Akgun Karabulut ◽  
Franka Mlikota Gabler ◽  
Monir Mansour ◽  
Joseph L. Smilanick
Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 309-316 ◽  
Author(s):  
F. Mlikota Gabler ◽  
J. L. Smilanick ◽  
J. M. Ghosoph ◽  
D. A. Margosan

The influence of brief immersion of grape berries in water or ethanol at ambient or higher temperatures on the postharvest incidence of gray mold (caused by Botrytis cinerea) was evaluated. The incidence of gray mold among grape berries that were untreated, or immersed for 1 min in ethanol (35% vol/vol) at 25 or 50°C, was 78.7, 26.2, and 3.4 berries/kg, respectively, after 1 month of storage at 0.5°C and 2 days at 25°C. Heated ethanol was effective up to 24 h after inoculation, but less effective when berry pedicels were removed before inoculation. Rachis appearance, epicuticular wax content and appearance, and berry shatter were unchanged by heated ethanol treatments, whereas berry color changed slightly and treated grape berries were more susceptible to subsequent infection. Ethanol and acetaldehyde contents of grape berries were determined 1, 7, and 14 days after storage at 0.5°C following treatment for 30 or 90 s at 30, 40, or 50°C with water, or 35% ethanol. Highest residues (377 μg/g of ethanol and 13.3 μg/g of acetaldehyde) were in berries immersed for 90 s at 50°C in ethanol. Among ethanol-treated grape berries, the ethanol content declined during storage, whereas acetaldehyde content was unchanged or increased. Untreated grape berries initially contained ethanol at 62 μg/g, which then declined. Acetaldehyde content was 0.6 μg/g initially and changed little during storage.


2021 ◽  
pp. 096739112110060
Author(s):  
Mouna Werchefani ◽  
Catherine Lacoste ◽  
Hafedh Belguith ◽  
Chedly Bradai

The present work is a comparative study of the impact of Alfa fiber modifications on the Cereplast composites mechanical behavior. Various treatments have been employed, including mechanical, soda, saltwater-retting, hot-water treatments and enzymatic treatment using xylanase. Chemical and morphological analyses were carried out in order to determine the changes of the biochemical composition and the dimensions of fibers. Cereplast composites reinforced with Alfa fibers were fabricated using a twin-screw extrusion followed by an injection molding technique with a fiber load of 20 wt. %. Resulting materials were assessed by means of tensile, flexural and Charpy impact testing. Scanning Electron Microscopy analysis was carried out to investigate the interfacial properties of the composites. The results have shown a significant enhancement of mechanical strengths and rigidities for the xylanase-treated fiber composites, owing to the increase of cellulose content, the enhancement of defibrillation level and the improvement of matrix-fiber adhesion. The data proved that the technology of enzymes can be used as a powerful and eco-friendly approach to modify fiber surfaces and to increase their potential of reinforcement.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 307-314 ◽  
Author(s):  
E. Feliziani ◽  
J. L. Smilanick ◽  
D. A. Margosan ◽  
M. F. Mansour ◽  
G. Romanazzi ◽  
...  

Potassium sorbate, a program of four fungicides, or one of three chitosan formulations were applied to clusters of ‘Thompson Seedless’ grape berries at berry set, pre-bunch closure, veraison, and 2 or 3 weeks before harvest. After storage at 2°C for 6 weeks, the natural incidence of postharvest gray mold was reduced by potassium sorbate, the fungicide program, or both together in a tank mixture, in 2009 and 2010. In 2011, the experiment was repeated with three chitosan products (OII-YS, Chito Plant, and Armour-Zen) added. Chitosan or fungicide treatments significantly reduced the natural incidence of postharvest gray mold among grape berries. Berries harvested from vines treated by two of the chitosan treatments or the fungicide program had fewer infections after inoculation with Botrytis cinerea conidia. None harmed berry quality and all increased endochitinase activity. Chitosan decreased berry hydrogen peroxide content. One of the chitosan formulations increased quercetin, myricetin, and resveratrol content of the berry skin. In another experiment, ‘Princess Seedless’ grape treated with one of several fungicides before 4 or 6 weeks of cold storage had less decay than the control. Fenhexamid was markedly superior to the other fungicides for control of both the incidence and spread of gray mold during storage.


2003 ◽  
Vol 66 (7) ◽  
pp. 1241-1246 ◽  
Author(s):  
BALASUBRAHMANYAM KOTTAPALLI ◽  
CHARLENE E. WOLF-HALL ◽  
PAUL SCHWARZ ◽  
JURGEN SCHWARZ ◽  
JAMES GILLESPIE

The use of Fusarium-infected barley for malting may lead to mycotoxin production and decreased product quality. Physical methods for the treatment of Fusarium-infected barley may prevent these safety and quality defects and allow the use of otherwise good quality barley. Hot water and electron beam irradiation were evaluated for their effectiveness in reducing Fusarium infection while maintaining germinative energy in barley samples. Hot-water treatments involved temperatures of 45, 50, 55, and 60°C and treatment times of 0, 1, 5, 10, and 15 min. Electron beam irradiation involved doses ranging from 0 to 11.4 kGy. Treatment with water at 45°C for 15 min resulted in a reduction in Fusarium infection from 32 to 1% after 15 min, with only a very slight reduction in germination. Treatment with water at 50°C for 1 min resulted in a reduction in Fusarium infection from 32 to 2%, and no effect on germination was observed for up to 5 min of treatment. At higher water temperatures, Fusarium infection was essentially eliminated, but germination was also severely reduced. Electron beam irradiation of Fusarium-infected barley reduced Fusarium infection at doses of >4 kGy, and a slight increase in germination for dry samples was observed with doses of 6 to 8 kGy. Doses of >10 kGy significantly decreased germination. Physical methods may have potential for the treatment of Fusarium-infected malting barley.


2006 ◽  
Vol 131 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

`Maurin Makea', `Muskoka', ` Ottawa', and `Preussen' red raspberry (Rubus idaeus L.) canes were collected from the field and subjected to different hot water treatments (20, 35, 40, 45, and 50 °C) to determine if endodormancy could be removed by a near lethal stress. Estimation of days for 50% budbreak (DD50) was found useful for describing the state of bud dormancy in the samples. Bud dormancy was broken in `Ottawa' by immersing the canes in 45 °C water for 2 hours, in `Maurin Makea' by treating the canes in 40 °C water, and in `Preussen' by both 40 and 45 °C treatments. The influence of this treatment on dormancy and cold hardiness at different times of the winter was further examined using `Ottawa' raspberry. The treatment removed bud dormancy most effectively in October, when the samples were in deepest dormancy. A slight effect was observed in November, but no effect in January. During ecodormancy in February the treatment delayed budbreak. Hot water treatment reduced cold hardiness of `Ottawa' canes by 8 to 15 °C, and that of buds by 9 to 13 °C during both endo- and ecodormancy. Based on the capacity of buds and canes to reacclimate, recovery from the stress treatment was possible at temperatures ≥4 °C. Loss of cold hardiness was caused by high treatment temperature itself and was not related to breaking of dormancy in samples. This finding suggests that dormancy and cold hardiness are physiologically unconnected in raspberry.


Sign in / Sign up

Export Citation Format

Share Document