scholarly journals Impact of Postharvest Hot Water or Ethanol Treatment of Table Grapes on Gray Mold Incidence, Quality, and Ethanol Content

Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 309-316 ◽  
Author(s):  
F. Mlikota Gabler ◽  
J. L. Smilanick ◽  
J. M. Ghosoph ◽  
D. A. Margosan

The influence of brief immersion of grape berries in water or ethanol at ambient or higher temperatures on the postharvest incidence of gray mold (caused by Botrytis cinerea) was evaluated. The incidence of gray mold among grape berries that were untreated, or immersed for 1 min in ethanol (35% vol/vol) at 25 or 50°C, was 78.7, 26.2, and 3.4 berries/kg, respectively, after 1 month of storage at 0.5°C and 2 days at 25°C. Heated ethanol was effective up to 24 h after inoculation, but less effective when berry pedicels were removed before inoculation. Rachis appearance, epicuticular wax content and appearance, and berry shatter were unchanged by heated ethanol treatments, whereas berry color changed slightly and treated grape berries were more susceptible to subsequent infection. Ethanol and acetaldehyde contents of grape berries were determined 1, 7, and 14 days after storage at 0.5°C following treatment for 30 or 90 s at 30, 40, or 50°C with water, or 35% ethanol. Highest residues (377 μg/g of ethanol and 13.3 μg/g of acetaldehyde) were in berries immersed for 90 s at 50°C in ethanol. Among ethanol-treated grape berries, the ethanol content declined during storage, whereas acetaldehyde content was unchanged or increased. Untreated grape berries initially contained ethanol at 62 μg/g, which then declined. Acetaldehyde content was 0.6 μg/g initially and changed little during storage.

2018 ◽  
Vol 16 (1) ◽  
pp. e1002 ◽  
Author(s):  
Kazem Kasfi ◽  
Parissa Taheri ◽  
Behrooz Jafarpour ◽  
Saeed Tarighi

The objective of this study was to identify grapevine epiphytic yeasts and bacteria for biocontrol of Botrytis cinerea on grapes. Antagonistic yeasts and bacteria were isolated from the epiphytic flora associated with grape berries and leaves cv. ‘Thompson seedless’ from vineyards in Iran and identified by sequencing the conserved genomic regions. A total of 130 yeast and bacterial isolates from the surface of grapevine were screened in vitro for determining their antagonistic effect against B. cinerea and used to control postharvest gray mold. Among the 130 isolates, five yeasts and four bacterial isolates showed the greatest antagonistic activity in vitro against B. cinerea. Two yeasts species including Meyerozyma guilliermondii and Candida membranifaciens had high antagonistic capability against the pathogen. Also, 4 bacterial isolates belonging to Bacillus sp. and Ralstonia sp. showed significant biocontrol effect against B. cinerea. The isolates were capable of producing volatile and non-volatile substances, which suppressed the pathogen growth. The antagonistic activity of selected yeasts and bacteria against the pathogen was investigated on wounded berries of ‘Thompson seedless’. On small clusters with intact berries, all of the antagonistic isolates considerably reduced the decay on grape berries and inhibition of gray mold incidence on fruits treated by these isolates was less than 50%, except for the isolate N1, which had higher capability in inhibiting the disease incidence. These results suggest that antagonist yeasts and bacteria with potential to control B. cinerea on grape can be found in the microflora of grape berries and leaves.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 307-314 ◽  
Author(s):  
E. Feliziani ◽  
J. L. Smilanick ◽  
D. A. Margosan ◽  
M. F. Mansour ◽  
G. Romanazzi ◽  
...  

Potassium sorbate, a program of four fungicides, or one of three chitosan formulations were applied to clusters of ‘Thompson Seedless’ grape berries at berry set, pre-bunch closure, veraison, and 2 or 3 weeks before harvest. After storage at 2°C for 6 weeks, the natural incidence of postharvest gray mold was reduced by potassium sorbate, the fungicide program, or both together in a tank mixture, in 2009 and 2010. In 2011, the experiment was repeated with three chitosan products (OII-YS, Chito Plant, and Armour-Zen) added. Chitosan or fungicide treatments significantly reduced the natural incidence of postharvest gray mold among grape berries. Berries harvested from vines treated by two of the chitosan treatments or the fungicide program had fewer infections after inoculation with Botrytis cinerea conidia. None harmed berry quality and all increased endochitinase activity. Chitosan decreased berry hydrogen peroxide content. One of the chitosan formulations increased quercetin, myricetin, and resveratrol content of the berry skin. In another experiment, ‘Princess Seedless’ grape treated with one of several fungicides before 4 or 6 weeks of cold storage had less decay than the control. Fenhexamid was markedly superior to the other fungicides for control of both the incidence and spread of gray mold during storage.


2004 ◽  
Vol 34 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Ozgur Akgun Karabulut ◽  
Franka Mlikota Gabler ◽  
Monir Mansour ◽  
Joseph L. Smilanick

Plant Disease ◽  
2001 ◽  
Vol 85 (6) ◽  
pp. 668-677 ◽  
Author(s):  
S. Coertze ◽  
G. Holz ◽  
A. Sadie

Table grapes (cv. Dauphine) at different phenological stages were dusted in a settling tower with dry conidia of Botrytis cinerea. The berries were incubated for periods of 3 to 96 h at high relative humidity (RH; ±93% RH, moist berries), or were covered with a film of water (wet berries). Germination of the solitary conidia, appressorium formation, stilbene and suberin induction by germlings, and germling viability were examined by fluorescence microscopy after each incubation period. Isolation and freezing studies were conducted to determine surface colonization (berries left unsterile) and penetration (surface-disinfested berries). Symptoms were determined on berries incubated at a specific wetness regime, kept dry for 10 days, and then incubated for 4 days at high RH. Microscopic observations indicated that germination was delayed on immature berries, but proceeded at a high rate on mature berries. Growth was invariably restricted on moist berries. Attempted penetration was always direct. Stilbene and suberin were generally induced early and were intense on berries at the pea-size and bunch closure stages. Dieback of conidia and germlings occurred at a significantly higher rate on wet than moist berries, and was more pronounced on immature than on mature berries. The segment isolation and freezing studies showed that infections in grape berry cheeks established by this infection mode were few. Extended incubation periods did not lead to substantially higher rates of surface colonization and skin penetration. Disease symptoms did not develop during the 14-day period on the berries transferred to dry perspex chambers, irrespective of phenological stage, incubation period, or wetness regime. According to these findings, this mode of infection should not contribute to a gradual build-up of secondary inoculum in the vineyard, and to B. cinerea epiphytotics.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 445-450 ◽  
Author(s):  
G. Romanazzi ◽  
F. Mlikota Gabler ◽  
J. L. Smilanick

The effectiveness of chitosan treatment of table grapes, alone or in combination with ultraviolet-C (UV-C) radiation, to control postharvest gray mold caused by Botrytis cinerea, was determined in California, United States. The influence of these treatments on catechin and resveratrol contents and chitinase activity in grape berry skins also was assessed. Clusters of cvs. Thompson Seedless, Autumn Black, and Emperor were sprayed in the vineyard with 1% chitosan, then harvested daily for 5 days. Promptly after harvest, they were inoculated with B. cinerea. Decay incidence and disease severity were significantly reduced by chitosan, which was most effective on berries harvested 1 or 2 days after treatment. In another experiment, grape berries were sprayed in the vineyard with chitosan, harvested 2 days later, irradiated for 5 min with UV-C (0.36 J/cm2), and inoculated with B. cinerea 2 days later. Combined chitosan and UV-C treatments applied to cv. Autumn Black or selection B36-55 were synergistic in reducing gray mold incidence and severity compared with either treatment alone. Preharvest chitosan treatment increased neither concentration of catechin or resveratrol nor activity of chitinase in berry skin. Conversely, UV-C irradiation, alone or combined with chitosan treatment, induced catechin in cv. Autumn Black berries and trans-resveratrol in both cv. Autumn Black and selection B36-55.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1384-1389 ◽  
Author(s):  
Ozgur Akgun Karabulut ◽  
Joseph L. Smilanick ◽  
Franka Mlikota Gabler ◽  
Monir Mansour ◽  
Samir Droby

The yeast Metschnikowia fructicola, ethanol, and sodium bicarbonate (SBC), alone or in combinations, were applied to table grapes on vines 24 h before harvest to control the incidence of postharvest diseases. In four experiments, all significantly reduced the total number of decayed berries caused by Botrytis cinerea, Alternaria spp., or Aspergillus niger after storage for 30 days at 1°C followed by 2 days at 20°C. In three experiments, a mean gray mold incidence (caused by B. cinerea) of 34.2 infected berries per kilogram among untreated grape was reduced by Metschnikowia fructicola at 2 × 107 CFU/ml, ethanol at 50% (vol/vol), or SBC at 2% (wt/vol) to 12.9, 8.1, or 10.6 infected berries per kilogram, respectively. Ethanol, SBC, and SO2 generator pads were similarly effective. M. fructicola effectiveness was not improved when combined with ethanol or SBC treatments. Ethanol and yeast treatments did not harm the appearance of the grapes. M. fructicola and SBC left noticeable residues, and SBC caused some visible phytotoxicity to the rachis and berries. Ethanol applied at 50% (vol/vol) reduced epiphytic fungal and bacterial populations by about 50% compared with controls. M. fructicola populations persisted on berries during storage when applied alone or after ethanol treatments, whereas SBC reduced its population significantly.


2019 ◽  
Author(s):  
tariq pervaiz ◽  
Haifeng Jia ◽  
Peian Zhang ◽  
Muhammad Salman Haider ◽  
Suwen Lu ◽  
...  

Abstract Background: Plants have great potential to protect against biotic and abiotic stresses. Hence, the interaction between defense signaling networks is incredible, which can either be activated with the application of growth elicitors or antimicrobial organic compounds. Results: In this study, chitosan (15kDa) is used against grey mold (Botrytis cinerea) in two grape varieties (Shine-Muscat and Kyoho). The findings depicted that the interaction of DEGs and KEGGs in control and treated samples of grapevine, which provides the evidence for selection of gray mold defense responsive genes and chitosan for subsequent application in grapevine production/postharvest. The genes encoding cyclic nucleotide gated ion channels (CNGCs) and CaM/CML expressed a large number of transcripts, meanwhile, in treated samples, CaM/CML and RPS2 showed the highest number of up-regulated genes. In plant hormone signal transduction pathway, treated samples AUXIAA and SAUR again the highest number of transcripts were found. In correlation with metabolome analysis, 20 differentially expressed metabolites were recorded. In the negative correlation in the control samples of Kyoho vs Shine mascate showed 224 and 157 up and down-regulated respectively. Moreover, antioxidants were also significantly regulated with the chitosan application and reduced the lesion diameter, water loss and disease incidence up to 12 days. In both varieties, the chitosan treatment superoxide dismutase, peroxidase, Malondialdehyde, catalase, and proline content was significantly increased during storage. Conclusion: The results depicted that at gene expression levels was varied at different fruit growth developmental stages, and the most effective in case of plant-pathogen interaction. Chitosan is seen to be more effective in both varieties and it acts as an anti-fungal agent. The transcriptomic study also confirmed that at the transcriptome level expression was higher in treated samples, however in general transcription factor have not much affected with chitosan application.


Sign in / Sign up

Export Citation Format

Share Document