Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit

2015 ◽  
Vol 108 ◽  
pp. 68-77 ◽  
Author(s):  
Fátima Carvajal ◽  
Francisco Palma ◽  
Manuel Jamilena ◽  
Dolores Garrido
2013 ◽  
Vol 40 (5) ◽  
pp. 449 ◽  
Author(s):  
Gabriela L. Müller ◽  
Claudio O. Budde ◽  
Martin A. Lauxmann ◽  
Agustina Triassi ◽  
Carlos S. Andreo ◽  
...  

To extend fruit market life, tomatoes are harvested before red ripe and kept at temperatures below optimum (20°C). In this work, Micro-Tom tomatoes stored at 20°C (normal ripening) were compared with those stored at 15°C or 4°C (chilling injury inducer) for 7 days. In contrast to 4°C, storage at 15°C delayed ripening with the benefit of not enhancing oxidative metabolism and of enabling ripening upon being transferred to 20°C. The transcriptional expression profile of enzymes related to cell wall metabolism was compared at the three temperatures. Although endo-β-1,4-glucanase (Cel1), which is associated with fruit decay, was largely increased after removal from 4°C storage, its expression was not modified in fruits stored at 15°C. Enhanced transcriptional expression of xyloglucan endotransgylcosylase/hydrolases (XTHs) XTH1, –2, –10 and –11, and of two β-xylosidases (Xyl1–2) was detected in fruits stored at 15°C with respect to those at 20°C. Following 2 days at 20°C, these transcripts remained higher in fruits stored at 15°C and XHT3 and –9 also increased. Ethylene evolution was similar in fruits kept at 15°C and 20°C; thus, the changes in the transcript profile and fruit properties between these treatments may be under the control of factors other than ethylene.


2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


2021 ◽  
Vol 22 (9) ◽  
pp. 4437
Author(s):  
Han Ryul Choi ◽  
Min Jae Jeong ◽  
Min Woo Baek ◽  
Jong Hang Choi ◽  
Hee Cheol Lee ◽  
...  

Cold storage of peach fruit at low temperatures may induce chilling injury (CI). Pre-storage 1-MCP and high CO2 treatments were reported among the methods to ameliorate CI and reduce softening of peach fruit. However, molecular data indicating the changes associated with pre-storage 1-MCP and high CO2 treatments during cold storage of peach fruit are insufficient. In this study, a comparative analysis of the difference in gene expression and physico-chemical properties of fruit at commercial harvest vs. stored fruit for 12 days at 0 °C (cold-stored (CS), pre-storage 1-MCP+CS, and pre-storage high CO2+CS) were used to evaluate the variation among treatments. Several genes were differentially expressed in 1-MCP+CS- and CO2+CS-treated fruits as compared to CS. Moreover, the physico-chemical and sensory data indicated that 1-MCP+CS and CO2+CS suppressed CI and delayed ripening than the CS, which could lead to a longer storage period. We also identified the list of genes that were expressed commonly and exclusively in the fruit treated by 1-MCP+CS and CO2+CS and compared them to the fruit quality parameters. An attempt was also made to identify and categorize genes related to softening, physiological changes, and other ripening-related changes. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR). These results add information on the molecular mechanisms of the pre-storage treatments during cold storage of peach fruit. Understanding the genetic response of susceptible cultivars such as ‘Madoka’ to CI-reducing pre-storage treatments would help breeders release CI-resistant cultivars and could help postharvest technologists to develop more CI-reducing technologies.


Sign in / Sign up

Export Citation Format

Share Document