Ethylene-induced banana starch degradation mediated by an ethylene signaling component MaEIL2

2021 ◽  
Vol 181 ◽  
pp. 111648
Author(s):  
Li-sha Zhu ◽  
Wei Shan ◽  
Chao-jie Wu ◽  
Wei Wei ◽  
Hong Xu ◽  
...  
Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 552 ◽  
Author(s):  
Song ◽  
Qin ◽  
Zheng ◽  
Ding ◽  
Chen ◽  
...  

Low-temperature storage is a common strategy for preserving and transporting vegetables and fruits. However, many fruits are hypersensitive to chilling injury, including bananas. In the present study, storage conditions of 11 °C delayed the ripening of Fenjiao (Musa ABB Pisang Awak) banana, and the pulp could be softened after ethephon treatment. Storage conditions of 7 °C prevented fruit from fully softening, and fruit contained a significantly higher starch content and lower soluble sugar content. MaEBF1, a critical gene component in the ethylene signaling pathway, was repressed during ripening after fruit had been stored for 12 days at 7 °C. The expression of a series of starch degradation-related genes and a MaNAC67-like gene were also severely repressed. Both MaEBF1 and MaNAC67-like genes were ethylene-inducible and localized in the nucleus. MaNAC67-like protein was able to physically bind to the promoter of genes associated with starch degradation, including MaBAM6, MaSEX4, and MaMEX1. Yeast two-hybrid, GST-pull down, and BiFC assays showed that MaEBF1 interacted with the MaNAC67-like protein, and their interaction further activated the promoters of MaBAM6 and MaSEX4. The current study indicates that MaNAC67-like is a direct regulator of starch degradation and potential for involvement in regulating chilling-inhibited starch degradation by interacting with the ethylene signaling components in banana fruit. The present work paves the way for further functional analysis of MaEBF1 and MaNAC67-like in banana, which will be useful for understanding the regulation of banana starch metabolism and fruit ripening.


2010 ◽  
Vol 64 (9) ◽  
pp. 1031-1035 ◽  
Author(s):  
Katsuhiko Hidaka ◽  
Takumi Sugi ◽  
Hiroyuki Suzuki
Keyword(s):  

2020 ◽  
Vol 21 (9) ◽  
pp. 872-881
Author(s):  
Sumit Sahoo ◽  
Sudipta Roy ◽  
Dipannita Santra ◽  
Sayantani Maiti ◽  
Sonali Roul ◽  
...  

Objective: Amylases enzymes hydrolyze starch molecules to produce diverse products including dextrins, and progressively smaller polymers. These include glucose units linked through α-1- 1, α-1-4, α-1-6, glycosidic bonds. Methods: This enzyme carrying an (α /β) 8 or TIM barrel structure is also produced containing the catalytic site residues. These groups of enzymes possess four conserved regions in their primary sequence. In the Carbohydrate-Degrading Enzyme (CAZy) database, α-amylases are classified into different Glycoside Hydrolase Families (GHF) based on their amino acid sequence. The present objective was to study one such enzyme based on its molecular characterization after purification in our laboratory. Its main property of solid-natural starch degradation was extensively investigated for its pharmaceutical/ industrial applications. Results: Amylase producing bacteria Bacillus cereus sm-sr14 (Accession no. KM251578.1) was purified to homogeneity on a Seralose 6B-150 gel-matrix and gave a single peak during HPLC. MALDITOF mass-spectrometry with bioinformatics studies revealed its significant similarity to α/β hydrolase family. The enzyme showed an efficient application; favourable Km, Vmax and Kcat during the catalysis of different natural solid starch materials. Analysis for hydrolytic product showed that this enzyme can be classified as the exo-amylase asit produced a significant amount of glucose. Conclusion: Besides the purified enzyme, the present organism Bacillus cereus sm-sr14 could degrade natural solid starch materials like potato and rice up to the application level in the pharmaceutical/ industrial field for alcohol production.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Sign in / Sign up

Export Citation Format

Share Document