scholarly journals Deterministic part orientation in additive manufacturing using feature recognition

Procedia CIRP ◽  
2020 ◽  
Vol 88 ◽  
pp. 405-410
Author(s):  
Torbjørn Schjelderup Leirmo ◽  
Kristian Martinsen
Author(s):  
Dylan Bender ◽  
Ahmad Barari

This paper presents a methodology to find the optimum build orientation in the additive manufacturing of topologically optimized structural parts. The outlined methodology is based on applying a differential operator to the density distribution matrix of a topologically optimized design. The methodology is developed for 2D parts, where the profile of the geometry is constant. The 2D spatial difference operator effectively calculates the elemental density gradient vector, ultimately used to calculate the angles between i) overhanging surfaces of a topology optimized design, and ii) the build platform of a 3D printer. These angles, referred to as build angles, are used to estimate the relative amount of supporting structure required to print the design at a prescribed part orientation. This methodology can potentially be adopted to simulate the additive manufacturing surface quality of density based, structural topology optimization designs.


Author(s):  
Ketan Thakare ◽  
Xingjian Wei ◽  
Zhijian Pei

Abstract PolyJet printing process is one of the additive manufacturing methods to print parts with high dimensional accuracy. To date, dimensional accuracies of such process have been investigated by a number of studies. This review will summarize those studies, and identify current trends. With respect to methods of measurements used in the reported studies, it is noted that no special preference is given to use of any method. In addition, the effects of four control variables of PolyJet process: part orientation, layer thickness, surface finish type and materials, on dimensional accuracy are noted based on the results of reported studies. There is consistency in results in studies considering control variables of layer thickness, surface finish type and materials. However, the results are inconsistent in studies considering part orientation.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Osama Abdulhameed ◽  
Abdulrahman Al-Ahmari ◽  
Syed Hammad Mian ◽  
Abdulmajeed Dabwan ◽  
Hisham Alkhalefah

The hybrid process, which integrates two or more different processes such as additive manufacturing and subtractive manufacturing, has gained appreciable considerations in recent years. This process exploits the benefits of individual processes while overcoming their limitations. Lately, the combination of additive, subtractive, and inspection methods is a valuable conglomeration, considering its potential to produce complicated components precisely. Certainly, computer-aided process plan (CAPP) provides a crucial link among different processes and is essential to avail the benefits of hybridization. However, a valuable process plan can only be achieved through the optimization of its different elements. Therefore, the objective of this work is the accomplishment of an optimized CAPP to fabricate parts in the shortest time employing the hybrid additive, subtractive, and inspection processes. In this work, mathematical models have been developed to optimize part orientation as well as minimize additive and subtractive times. Additionally, the genetic algorithm has been employed to obtain the best path with minimum inspection time. The feasibility and capability of the proposed approach as well as the optimized CAPP for the hybrid process have been demonstrated through a case study.


2018 ◽  
Vol 24 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Abdurahman Mushabab Al-Ahmari ◽  
Osama Abdulhameed ◽  
Awais Ahmad Khan

Purpose In additive manufacturing processes such as stereolithography and fused deposition modeling, optimal part orientation is pivotal in improving the quality of the part. This paper aims to propose an automatic and optimal part orientation system to improve part quality/accuracy in additive manufacturing, which minimizes the production time and hence reduces the cost of product. Design/methodology/approach The developed system reads STEP AP 203 E2 file from CATIA V5 and generates data extraction output file by extracting the relevant geometrical and topological data using an object-oriented approach. Afterwards, the algorithms and rules are developed to extract and recognize feature faces along with their geometric properties such as face type, face area, parallelism and perpendicularity. The feature data obtained that are used to develop feasible part orientations depend on the maximization of G&DT for all part faces. The automatic slicing is then achieved by creating slicing file using CATVBA editor inside CATIA V5. Findings After slicing, output data are exported in Excel data sheet to calculate the total additive volume of the part. The building time of the part is then calculated on the basis of machine parameters, part geometry, part height, layer thickness and amount of support volume needed to build the part. The optimal orientation of the part is achieved by maximization of G&DT value and minimization of production time. The proposed methodology is tested using an illustrative example. Originality/value Although lot of approaches have been discussed in the literature, automation of setup planning/orientation of the part in additive manufacturing is not fully attained. Therefore, the article focuses on the automation of setup planning by adding automatic feature extraction and recognition module along with the automatic slicing during setup planning. Moreover, the significance of adding feature extraction and recognition module is to achieve best accuracy for form feature faces and hence reduction in post processing machining/finishing operations.


Author(s):  
Binbin Zhang ◽  
Prakhar Jaiswal ◽  
Rahul Rai ◽  
Saigopal Nelaturi

Functionally graded materials (FGM) have recently attracted a lot of research attention in the wake of the recent prominence of additive manufacturing (AM) technology. The continuously varying spatial composition profile of two or more materials affords FGM object to simultaneously possess ideal properties of multiple different materials. Additionally, emerging technologies in AM domain enables one to make complex shapes with customized multifunctional material properties in an additive fashion, where laying down successive layers of material creates an object. In this paper, we focus on providing an overview of research at the intersection of AM techniques and FGM objects. We specifically discuss the FGM modeling representation schemes and outline a classification system to classify existing FGM representation methods. We also highlight the key aspects such as the part orientation, slicing, and path planning processes that are essential for fabricating a quality FGM object through the use of multi-material AM techniques.


2021 ◽  
Vol 1 ◽  
pp. 2399-2408
Author(s):  
Jannik Reichwein ◽  
Eckhard Kirchner

AbstractAdditive manufacturing offers great potential in geometric design through the layer-by-layer production of components. This is often used in the development of additively manufactured components to make components lighter. An even greater reduction in mass is possible if several components are combined into a more complex component. However, as complexity increases, so do the manufacturing costs, due to a higher demand for supporting structure, reworking and longer production time. Especially for complex components, which make poor use of the space available in the additive manufacturing system, component separation can be a useful way of reducing manufacturing costs. Therefore, a procedure for automated component separation is presented, which determines an optimal cutting plane with respect to the manufacturing costs. The presented procedure is evaluated using two exemplary components where a reduction of manufacturing costs up to 54 % could be achieved.


Author(s):  
Yuchu Qin ◽  
Qunfen Qi ◽  
Peizhi Shi ◽  
Paul J. Scott ◽  
Xiangqian Jiang

AbstractPart orientation is a critical task in the process of additive manufacturing product realisation. Recently, various computer-aided methods for this task have been presented in the literature. The coexistence of different methods generates a series of questions: What are the common characteristics of these methods? What are the specific characteristics of each method? What are the main issues in computer-aided part orientation for additive manufacturing currently? What are the potential research directions in this field in the future? To approach these questions, a review of the existing computer-aided part orientation methods for additive manufacturing is presented in this paper. This review starts with a clarification of a part orientation problem and a classification of the existing methods into two categories according to their process of solving the problem. An overview of the representative methods in each category is then carried out from the aspects of approaches for orientation search, generation, or selection, estimation of build orientation factors, determination of weights of factors, establishment of overall objective function, and demonstration of effectiveness. After that, a discussion about the main issues in computer-aided part orientation for additive manufacturing is documented based on the overview. Finally, a suggestion of some future research directions in this field is reported.


Author(s):  
Ratnadeep Paul ◽  
Sam Anand ◽  
Frank Gerner

In metal additive manufacturing (AM) processes, parts are manufactured in layers by sintering or melting metal or metal alloy powder under the effect of a powerful laser or an electron beam. As the laser/electron beam scans the powder bed, it melts the powder in successive tracks which overlap each other. This overlap, called the hatch overlap, results in a continuous cycle of rapid melting and resolidification of the metal. The melting of the metal from powder to liquid and subsequent solidification causes anisotropic shrinkage in the layers. The thermal strains caused by the thermal gradients existing between the different layers and between the layers and the substrate leads to considerable thermal stresses in the part. As a result, stress gradients develop in the different directions of the part which lead to distortion and warpage in AM parts. The deformations due to shrinkage and thermal stresses have a significant effect on the dimensional inaccuracies of the final part. A three-dimensional thermomechanical finite element (FE) model has been developed in this paper which calculates the thermal deformation in AM parts based on slice thickness, part orientation, scanning speed, and material properties. The FE model has been validated and benchmarked with results already available in literature. The thermal deformation model is then superimposed with a geometric virtual manufacturing model of the AM process to calculate the form and runout errors in AM parts. Finally, the errors in the critical features of the AM parts calculated using the combined thermal deformation and geometric model are correlated with part orientation and slice thickness.


Sign in / Sign up

Export Citation Format

Share Document