scholarly journals Studies on Effect of Tool Design and Welding Parameters on the Friction Stir Welding of Dissimilar Aluminium Alloys AA 5052 – AA 6061

2014 ◽  
Vol 75 ◽  
pp. 93-97 ◽  
Author(s):  
V. RajKumar ◽  
M. VenkateshKannan ◽  
P. Sadeesh ◽  
N. Arivazhagan ◽  
K. Devendranath Ramkumar
Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2014 ◽  
Vol 59 (1) ◽  
pp. 385-392
Author(s):  
B. Rams ◽  
A. Pietras ◽  
K. Mroczka

Abstract The article presents application of FSW method for joining elements made of cast aluminium alloys which are hardly weldable with other known welding techniques. Research’s results of plasticizing process of aluminium and moulding of seam weld during different FSW process’ conditions were also presented. Influence of welding parameters, shape and dimensions of tool on weld structure, welding stability and quality was examined. Application of FSW method was exemplified on welding of hemispheres for valves made of cast aluminium alloy EN AC-43200.


Author(s):  
Yousef Imani ◽  
Michel Guillot

Invented in 1991, friction stir welding (FSW) is a new solid state joining technique. This process has many advantages over fusion welding techniques including absence of filler material, shielding gas, fumes and intensive light, solid state joining, better microstructure, better strength and fatigue life, and etc. The difficulty with FSW is in the high forces involved especially in axial direction which requires use of robust fixturing and very stiff FSW machines. Reduction of FSW force would simplify implementation of the process on less stiff CNC machines and industrial robots. In this paper axial welding force reduction is investigated by use of tool design and welding parameters in FSW of 3.07 mm thick AA6061-T6 sheets at right angle. Attempt is made to reduce the required axial force while having acceptable ultimate tensile strength (UTS). It is found that shoulder working diameter and shoulder angle are the most important parameters in the axial force determination yet pin angle has minor effect. According to the developed artificial neural network (ANN) model, proper selection of shoulder diameter and angle can lead to approximately 40% force reduction with acceptable UTS. Regions of tool design and welding parameters are found which result in reduced axial force along with acceptable UTS.


2017 ◽  
Vol 31 (3) ◽  
pp. 291-310 ◽  
Author(s):  
Kabeer Raza ◽  
Muhammad Shamir ◽  
Muhammad Kashan Akhtar Qureshi ◽  
Abdul Shaafi Shaikh ◽  
Muhammad Zain-ul-abdein

Friction stir welding is a recently developed technique for joining low-melting metals and polymers. In the present work, friction stir welded joints of high-density polyethylene (HDPE) sheets were produced using a newly designed tool with a concave shoulder and a grooved conical pin. The joints were produced with and without the additions of ceramic particulates including silicon carbide (SiC), alumina, graphite, and silica. The effect of strain rate on the tensile properties of base material and plain welded joints was examined. In addition to tensile properties of composite joints, hardness profiles across the weld nugget were analyzed. It was observed that the increasing strain rate improved both the tensile strength and the ductility of the plain welded joints. The tool was able to yield a joint efficiency of around 84% in the plain welded samples. Although, in terms of joint efficiency, the composite joints were less efficient than the plain welded HDPE, SiC additions were found to yield better material properties relative to other reinforcements. Finally, it was concluded that an SiC–HDPE composite joint can be of practical importance in high strain rate applications, provided the optimum tool design and stir welding parameters are available.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 214 ◽  
Author(s):  
Velaphi Msomi ◽  
Nontle Mbana

Welding of dissimilar aluminium alloys has been a challenge for a long period until the discovery of the solid-state welding technique called friction stir welding (FSW). The discovery of this technique encouraged different research interests revolving around the optimization of this technique. This involves the welding parameters optimization and this optimization is categorized into two classes, i.e., similar alloys and dissimilar alloys. This paper reports about the mechanical properties of the friction stir welded dissimilar AA1050-H14 and AA5083-H111 joint. The main focus is to compare the mechanical properties of specimens extracted from different locations of the welds, i.e., the beginning, middle, and the end of the weld. The specimen extracted at the beginning of the weld showed low tensile properties compared to specimens extracted from different locations of the weld. There was no certain trend noted through the bending results. All three specimens showed dimpled fracture, which is the characterization of the ductile fracture.


2010 ◽  
Vol 638-642 ◽  
pp. 1261-1266 ◽  
Author(s):  
Christian A. Widener ◽  
Dwight A. Burford ◽  
Sarah Jurak

Friction stir welding (FSW) is a complex thermo-mechanical process which produces wrought microstructure with microstructural gradients in grain size, grain orientation, dislocation density, and precipitate distribution. The type and degree of microstructural modification is a function of the particular alloy chosen, its initial temper, the tool design and corresponding weld process parameter window, and other variables like material thickness, size, fixturing, etc. Since the microstructural changes produced can dramatically affect resultant mechanical performance and corrosion response, a thorough understanding of the variables involved in those changes is needed. A design of experiments approach was used to study the effects of welding parameter selection on the microstructural changes wrought by FSW with two different sizes of the same FSW tool design. A combination of microhardness mapping and electrical conductivity testing was used to investigate potential differences. The importance of these factors and the means for characterizing them for developing standards and specifications are also discussed.


Sign in / Sign up

Export Citation Format

Share Document