scholarly journals Near Ductile Regime Machining of Tungsten Carbide insert through Control of Cutting Speed Parameter While Using a Poly-Crystalline Diamond Tool

2017 ◽  
Vol 8 ◽  
pp. 549-556 ◽  
Author(s):  
Ramesh Kuppuswamy ◽  
Nomvelo Mkhize
2008 ◽  
Vol 389-390 ◽  
pp. 132-137 ◽  
Author(s):  
Akinori Yui ◽  
Hiroshi Matsuoka ◽  
Takayuki Kitajima ◽  
Shigeki Okuyama

Diamond tools wear easily under cutting tungsten carbide. To clarify the wear mechanism, the authors composed a temperature-measurement system of a cutting point using a dual-colorinfrared pyrometer and performed planing experiments. Infrared rays, emitted from the contact point between a mono-crystal-diamond tool and a cobalt-free tungsten carbide, are transmitted though the diamond tool and an optical fiber and then they are detected by the pyrometer. Before the planing experiments, rubbing experiments were performed using a mono-crystal-diamond stick and a tungsten-carbide disk. The effects of gas environments and rubbing conditions on contact-point temperature, friction coefficient, and diamond wear were experimentally investigated. Planing experiments of the tungsten carbide using mono-crystal-diamond tool, were performed. The effects of planing conditions and gas environments on cutting-point temperature and tool wear were investigated. Through the experiments the following results were obtained. Rubbing and cutting point temperature is the highest in Argon gas followed by Nitrogen gas and is the lowest in Air. Diamond-tool wear is the greatest in Argon gas, less in Nitrogen gas, and the least in Air. The reason for this is that a chemically or physically absorbed layer of oxygen or nitrogen on tungsten carbide acts as a lubricant at the contact point. Cutting-point temperature was in proportion to cutting speed. The temperature under cutting speed at 90m/min and cutting depth at 1.0μm in Air was approximately 170degrees Celsius.


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


2017 ◽  
Vol 41 (1) ◽  
pp. 129-141 ◽  
Author(s):  
K.M. Kumar ◽  
P. Hariharan

This work compares the effect of cubic boron nitride (CBN) and multilayer (TiCN+Al2O3+TiN) coated tungsten carbide (WC) tools during the turning of spheroidal graphite (SG) nodular iron. Nodular irons have more ductility which is required in mechanical components that demand high fatigue resistance like crankshafts, cam shafts, bearing caps and clutch housings. The impact of various process parameters like the depth of cut, cutting speed and feed on the surface roughness (Ra) of SG iron is studied and optimized using the response surface model. The chip morphology is also discussed for evaluation of the quality of the turned surface. The experimental outcomes reveal that the WC tool offers a high surface finish at the optimal combination of the cutting speed at 102 meter/minute, feed at 0.051 millimeter/revolution and depth of cut at 0.5 millimeter and that, for the CBN insert, at 245 meter/minute of cutting speed, 0.051 millimeter/revolution of feed and 0.75 millimeter of depth of cut.


2013 ◽  
Vol 7 (4) ◽  
pp. 433-438 ◽  
Author(s):  
Junsuke Fujiwara ◽  
◽  
Keisuke Wakao ◽  
Takeshi Miyamoto ◽  

The influence of the tungsten-carbide (WC) particle size and Co contents of cemented carbides on polycrystalline diamond tool wear during turning was investigated experimentally. The main results obtained were as follows. (1) Tool wear increased with increasing Co content. (2) It is important to cut off the binder between the WC particles and the Co. (3) Cemented carbides containing small WC particles are more effective than cemented carbides containing large particles.


2014 ◽  
Vol 591 ◽  
pp. 15-18
Author(s):  
Subramani Muniraj ◽  
Nambi Muthukrishnan

An experimental investigation is carried out on machining Micro Alloy Steel (MAS). The cylindrical rods of diameter 60 mm and length 250 mm is machined using the medium duty lathe of 2 kW spindle power to study the machinability issues of MAS using K20 multi coated (TiN-TiCN-Al203-ZrCN) Carbide insert. The optimum cutting parameters have been identified by power consumed by main spindle, and average surface roughness of machined component. Results show at higher cutting speeds; good surface finish is obtained. It is concluded that, surface finish is directly proportionate to the cutting speed. Results provide some useful information.


2013 ◽  
Vol 446-447 ◽  
pp. 291-295
Author(s):  
Malhar Ozarkar ◽  
Rugwed Bhatkhande ◽  
Shray Jerath ◽  
A.P. Kulkarni

This study presents experimental result of surface roughness and chip-tool interface temperature developed during turning of AISI 316 austenitic stainless steels using TiAlSiN coated cemented carbide insert. TiAlSiN coating is deposited by Cathodic Arc Evaporation (PVD) technique. The work-tool thermocouple calibration set-up was developed. The air heater was used as a heating element at the work-tool junction. The experiments were conducted at cutting speeds in the range of 140 to 320 m/min, feed in the range of 0.08 to 0.26 mm/rev keeping depth of cut constant at 1 mm. The influence of cutting parameters and tool coating were investigated on the average chip-tool interface temperature and surface roughness. Experimentally interface temperature 979°C was observed at 260 m/min cutting speed and 0.14 mm/rev feed. The interface temperature in turning is strongly dependent on the cutting speed followed by feed and exactly reverse case was observed in case of surface roughness. TiAlSiN coating shows better performance and can be considered as a prominent candidate for the machining of AISI 316 work material.


2013 ◽  
Vol 579-580 ◽  
pp. 211-215
Author(s):  
Guo Jun Dong ◽  
Yuan Jing Zhang ◽  
Ming Zhou

The problem of diamond tool wear is the bottleneck for machining large metal reflector with ultraprecision cutting method. In this paper, the author performed simulation study on diamond tool wear in machining large metal reflectors, and established a molecular dynamics simulation model for dynamic simulation of tool wear; and found that in the simulation process the change in cutting speed and cutting depth had definite effect on the tool wear, and the main factors affecting the tool wear was the cutting distance.


The aim of the present study is to know the effect of material properties on surface roughness during dry turning of H13 tool steel. Machining was performed using Tungaloy made carbide insert. Chip reduction coefficient (CRC) and surface roughness values (Ra) were experimentally determined. Twenty seven experiments were conducted following 33 factorial design. Subsequently, chip samples were examined under scanning electron microscope. Surface roughness values were found to be influenced by strain hardening and strain rate hardening of the material depending upon the values of speed, feed and depth of cut (d.o.c). Surface quality improves because of strain rate hardening at higher cutting speed.


Sign in / Sign up

Export Citation Format

Share Document