scholarly journals Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds

2017 ◽  
Vol 10 ◽  
pp. 750-759 ◽  
Author(s):  
Sairam Vangapally ◽  
Kuldeep Agarwal ◽  
Alex Sheldon ◽  
Shaobiao Cai
2019 ◽  
Vol 38 (2019) ◽  
pp. 792-805 ◽  
Author(s):  
S. Ramakrishna Kandala ◽  
Kantesh Balani ◽  
Anish Upadhyaya

AbstractThe present study compares the mechanical properties and electrochemical behaviour of austenitic (AISI 316 L) stainless steel compacted at different pressures (200, 400 and 600 MPa), which are conventionally sintered at supersolidus temperature of 1,400°C. As expected, increase in compaction pressure (from 200 MPa) to 600 MPa has shown decreased shrinkage (from 7.3% to 4.2% radial and 5.5% to 3.4% axial, respectively) and increased densification (up to ~92%). Their electrochemical behaviour was investigated in 0.1 N H2SO4 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The mechanical properties (such as yield-, tensile- and transverse rupture strength) and electrochemical behaviour with pressure have been correlated with densification response and microstructure (pore type, volume and morphology). Highest densification (~92% theoretical) achieved at 600 MPa (compaction pressure) and 1,400°C (sintering temperature) resulted in excellent combination of tensile strength and ductility (456 ± 40 MPa and 25 ± 1.1% respectively), while showing lowest corrosion rate (0.1 mmpy or 4.7 mpy) due to the presence of isolated porosity in the sintered samples.


Author(s):  
Liang Wang ◽  
Sergio D. Felicelli ◽  
Jacob Coleman ◽  
Rene Johnson ◽  
Karen M. B. Taminger ◽  
...  

Electron beam freeform fabrication (EBF3) is a process that uses an electron beam and wire feedstock to fabricate metallic parts inside a vacuum chamber. In this study, single and multiple layer linear deposits of AISI 316L stainless steel were produced with the EBF3 machine at NASA Langley Research Center (LaRC). EBF3 process parameters, including beam current, translation speed, and wire feed rate, were investigated in order to consider their effects on the resulting steel deposit geometry, microstructure and mechanical properties. Results indicate that the EBF3 process can produce pore-free, fully dense material within the range of process parameters used in this study. The electron beam deposited stainless steel has a solidification microstructure with fine columnar grains within most parts of the deposit due to the high cooling rate during the deposition, with some small homogeneous equiaxed grains at the top of the deposit. The mechanical properties of the deposits are comparable to those of wrought metal, which is attributed to the homogeneous fine-grained microstructure.


Author(s):  
Bikash Choudhuri ◽  
Ruma Sen ◽  
Subrata Kumar Ghosh ◽  
Subhash Chandra Saha

Wire electric discharge machining is a non-conventional machining wherein the quality and cost of machining are influenced by the process parameters. This investigation focuses on finding the optimal level of process parameters, which is for better surface finish, material removal rate and lower wire consumption for machining stainless steel-316 using the grey–fuzzy algorithm. Grey relational technique is applied to find the grey coefficient of each performance, and fuzzy evaluates the multiple performance characteristics index according to the grey relational coefficient of each response. Response surface methodology and the analysis of variance were used for modelling and analysis of responses to predict and find the influence of machining parameters and their proportion of contribution on the individual and overall responses. The measured values from confirmation experiments were compared with the predicted values, which indicate that the proposed models can be effectively used to predict the responses in the wire electrical discharge machining of AISI stainless steel-316. It is found that servo gap set voltage is the most influential factor for this particular steel followed by pulse off time, pulse on time and wire feed rate.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 919 ◽  
Author(s):  
Črtomir Donik ◽  
Jakob Kraner ◽  
Irena Paulin ◽  
Matjaž Godec

We have investigated the impact of the process parameters for the selective laser melting (SLM) of the stainless steel AISI 316L on its microstructure and mechanical properties. Properly selected SLM process parameters produce tailored material properties, by varying the laser’s power, scanning speed and beam diameter. We produced and systematically studied a matrix of samples with different porosities, microstructures, textures and mechanical properties. We identified a combination of process parameters that resulted in materials with tensile strengths up to 711 MPa, yield strengths up to 604 MPa and an elongation up to 31%, while the highest achieved hardness was 227 HV10. The correlation between the average single-cell diameter in the hierarchical structure and the laser’s input energy is systematically studied, discussed and explained. The same energy density with different SLM process parameters result in different material properties. The higher energy density of the SLM produces larger cellular structures and crystal grains. A different energy density produces different textures with only one predominant texture component, which was revealed by electron-backscatter diffraction. Furthermore, three possible explanations for the origin of the dislocations are proposed.


2021 ◽  
Author(s):  
Erica Liverani ◽  
Alessandro Fortunato

Abstract Stainless steel (SS) alloys produced by Laser-based Powder Bed Fusion (LPBF) process offers comparable and sometime improved mechanical properties respect to conventionally processed materials. Some of these steels have been extensively studied in the last decade, however additively manufactured martensitic SS, as AISI 420, need further research in characterizing their post built quality and mechanical behaviour. This lack of information on martensitic SS is not consistent with their growing demand in the automotive, medical and aerospace industries due to their good corrosion resistance, high hardness and good tensile properties. Selection of the appropriate process parameters and post treatments plays a fundamental role in determining final properties. For this reason, the effect of LPBF process parameters and different heat treatments on density, defects characteristics and location, roughness and mechanical properties of AISI 420 were investigated in this paper. A first experimental campaign was carried out to establish different set of suitable process parameters for industrial applications. Starting from this result, the detected defects properties was investigated by Computed Tomography (CT) scans. Dimensions, sphericity and distributions of defects inside the volume were analysed and compared between samples manufactured with different parameters. In the second part of the paper, the influence of process and post process conditions on mechanical properties was investigated. The final presented results establish a correlation between the involved production cycle and the resulting properties of LPBF AISI 420 specimens.


Sign in / Sign up

Export Citation Format

Share Document