scholarly journals Video System Correlated with Force Plate Recordings for Vertical Jump Biomechanics Analysis

2020 ◽  
Vol 46 ◽  
pp. 857-862
Author(s):  
Mihaela Ioana Baritz
Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Irineu Loturco ◽  
Lucas Pereira ◽  
Ronaldo Kobal ◽  
Cesar Cal Abad ◽  
Victor Fernandes ◽  
...  

This study aimed to examine the associations between a series of mechanical variables automatically generated by a portable force plate (PFP) and the actual performance of professional sprinters over a 150 m course. To test these correlations, 12 top-level sprinters performed vertical jumps (squat and countermovement jumps; SJ and CMJ, respectively), a 60 m sprint test, and a 150 m sprint test. Pearson product-moment coefficient of correlation and multiple regression analyses were used to determine the relationships between the sprinting velocities and vertical jump outputs. The SJ parameters were moderately to near perfectly associated with the different sprint distances, and the SJ height presented the highest correlation scores (r = 0.90 with velocities over 10- and 20-m). The correlation coefficients between the CMJ outcomes and sprint results varied between moderate and very large (from 0.38 to 0.88). Finally, the coefficients of determination (R2) ranged from 0.71 to 0.85 for the different multiple regressions involving PFP automatic measures. The PFP can provide practitioners with quick and accurate information regarding competitive athletes. Due to the strong correlations observed, coaches are encouraged to frequently adjust and tailor the training strategies of their sprinters, using practical and timesaving PFP measurements.


2018 ◽  
Vol 34 (5) ◽  
pp. 410-413 ◽  
Author(s):  
Jason Lake ◽  
Peter Mundy ◽  
Paul Comfort ◽  
John J. McMahon ◽  
Timothy J. Suchomel ◽  
...  

This study examined concurrent validity of countermovement vertical jump reactive strength index modified and force–time characteristics recorded using a 1-dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral countermovement vertical jumps on 2 portable force plates placed on top of 2 in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to takeoff; jump height; reactive strength index modified; and braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r ≥ .99). There were small (d < 0.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (P < .001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% confidence limits, 0.9%–2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement were for jump height (2.1%), time to takeoff (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force–time variables, from unloaded countermovement vertical jump. Thus, practitioners can use both force plates interchangeably.


2020 ◽  
Vol 30 (89) ◽  
pp. 13-20
Author(s):  
Dimitrije Cabarkapa ◽  
Andrew Fry ◽  
Damjana Cabarkapa ◽  
Arden Rogers ◽  
Eric Mosier

Aim: The purpose of this study was to quantify ground reaction forces for some of the most commonly utilised volleyball blocking approaches and to examine their kinetic and kinematic characteristics. Basic procedures: The study was comprised of 18 healthy recreationally active women who volunteered to participate. Immediately after completion of the warm-up protocol, subjects performed 5 blocking approaches: stationary blocking approach (SBA), shuffle block to the right (SHBR), shuffle block to the left (SHBL), swing block to the right (SWBR) and swing block to the left (SWBL). In order to allow adequate recovery, each trial was randomly assigned and separated by a 1-2 minute rest interval. A uni-axial force plate with data acquisition system sampling at 1000 Hz was used to measure ground reaction forces. Main findings: SWBR and SWBL unveiled the greatest peak concentric force and rate of force development when compared to SBA, while no difference was observed when compared to SHBR and SHBL. Results: No significant differences were observed in peak landing force, impulse, and vertical jump height between any of the blocking approaches examined in this study. Conclusions: Knowing biomechanical characteristics of some of the most commonly utilised volleyball blocking approaches may help athletes to appropriately respond and quickly adjust to the opponent’s attacking position. Kinetic and kinematic variables are likely to be augmented with an advanced level of competition and can be trained and improved by properly designed and implemented strength and conditioning programmes.


2010 ◽  
Vol 2 (2) ◽  
pp. 3481
Author(s):  
Christian Baumgart ◽  
Volker Lange-Berlin ◽  
Rüdiger Hofmann ◽  
Jürgen Freiwald

2021 ◽  
Vol 11 (24) ◽  
pp. 12025
Author(s):  
Stefan Marković ◽  
Milivoj Dopsaj ◽  
Sašo Tomažič ◽  
Anton Kos ◽  
Aleksandar Nedeljković ◽  
...  

The aim of the present study was to determine if an inertial measurement unit placed on the metatarsal part of the foot can provide valid and reliable data for an accurate estimate of vertical jump height. Thirteen female volleyball players participated in the study. All players were members of the Republic of Serbia national team. Measurement of the vertical jump height was performed for the two exemplary jumping tasks, squat jump and counter-movement jump. Vertical jump height estimation was performed using the flight time method for both devices. The presented results support a high level of concurrent validity of an inertial measurement unit in relation to a force plate for estimating vertical jump height (CMJ t = 0.897, p = 379; ICC = 0.975; SQJ t = −0.564, p = 0.578; ICC = 0.921) as well as a high level of reliability (ICC > 0.872) for inertial measurement unit results. The proposed inertial measurement unit positioning may provide an accurate vertical jump height estimate for in-field measurement of jump height as an alternative to other devices. The principal advantages include the small size of the sensor unit and possible simultaneous monitoring of multiple athletes.


Sports ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 60
Author(s):  
Micah Gross ◽  
Fabian Lüthy

Regularly assessing anaerobic power is important for athletes from sports with an explosive strength component. Understanding the differences and overlap between different assessment methods might help coaches or smaller-scale testing facilities maximize financial and temporal resources. Therefore, this study investigated the degree to which cycling sprint and vertical jump tests are interchangeable for determining peak mechanical leg power output in strength-trained athletes. Professional skiers (n = 19) performed unloaded squat jumps (SJ) and other jump forms on a force plate and a six-second cycling sprint (6sCS) test on an ergometer on six occasions over two years. Along with cross-sectional correlations between cycling and jumping power, correlations between longitudinal percent changes and agreement between magnitude-based inferences about individual changes were assessed. Among the tested jump forms, SJ reflected 6sCS best. However, despite extremely large cross-sectional correlation coefficients (0.92) between 6sCS and SJ, and moderate (Pearson’s r = 0.32 for 6sCS with SJ over one-year time spans) to large (r = 0.68 over shorter time spans) correlation coefficients on percent changes, magnitude-based inferences agreed in only around 50% of cases. Thus, for making qualitative assessments about the development of anaerobic power over time in athletes, cycling sprint and squat jump tests are not interchangeable. Rather, we recommend employing the test form that best reflects athletes’ strength and conditioning training.


2017 ◽  
Vol 12 (5) ◽  
pp. 661-664 ◽  
Author(s):  
Matthew Driller ◽  
Francisco Tavares ◽  
Daniel McMaster ◽  
Shannon O’Donnell

The use of counter-movement jumps as a measure of neuromuscular performance in athletes has become common in the sport setting. Accurate methods of measuring jump parameters are often expensive, difficult to transport and require expert knowledge. A new smartphone application ( My Jump) claims to be a valid and reliable tool for assessing jump height but is yet to be evaluated by independent researchers. Sixty-one recreational athletes (30 male/31 female, mean ± SD; age: 20 ± 4 years) each performed three counter-movement jumps (totalling 183 jumps) on a force plate following a standardised warm-up. All jumps were recorded using an iPhone 6 s and analysed for jump height (m) and flight time (s) using the My Jump application. Jumps were compared between a force plate and My Jump for validity with inter-scorer reliability also assessed. Results show that My Jump is valid (mean bias = 0.9 cm, r = 0.96) and reliable (typical error of estimate = 1.4 cm) for assessing jump performance in recreational athletes using an iPhone 6 s with a 240 Hz high-speed camera. My Jump is a cost-effective and easy-to-use alternative for measuring vertical jump performance without the need for specialist equipment or expertise.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 140 ◽  
Author(s):  
Jason Lake ◽  
Simon Augustus ◽  
Kieran Austin ◽  
Peter Mundy ◽  
John McMahon ◽  
...  

The Push Band has the potential to provide a cheap and practical method of measuring velocity and power during countermovement vertical jumping (CMJ). However, very little is known about whether it conforms to laboratory-based gold standards. The aim of this study was to assess the agreement between peak and mean velocity and power obtained from the belt-worn Push Band, and derived from three-dimensional motion capture, and vertical force from an in-ground force platform. Twenty-two volunteers performed 3 CMJ on a force platform, while a belt-worn Push Band and a motion capture system (a marker affixed to the Push Band) simultaneously recorded data that enabled peak and mean velocity and power to be calculated and then compared using ordinary least products regression. While the Push Band is reliable, it tends to overestimate peak (9–17%) and mean (24–27%) velocity, and when compared to force plate-derived peak and mean power, it tends to underestimate (40–45%) and demonstrates fixed and proportional bias. This suggests that while the Push Band may provide a useful method for measuring peak and mean velocity during the CMJ, researchers and practitioners should be mindful of its tendency to systematically overestimate and that its measures of peak and mean power should not be used.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7240
Author(s):  
Casey M. Watkins ◽  
Ed Maunder ◽  
Roland van den Tillaar ◽  
Dustin J. Oranchuk

Vertical jump is a valuable training, testing, and readiness monitoring tool used across a multitude of sport settings. However, accurate field analysis has not always been readily available or affordable. For this study, two-dimensional motion capture (Mo-Cap), G-Flight micro-sensor, and PUSH accelerometer technologies were compared to a research-grade force-plate. Twelve healthy university students (7 males, 5 females) volunteered for this study. Each participant performed squat jumps, countermovement jumps, and drop jumps on three separate occasions. Between-device differences were determined using a one-way repeated measures ANOVA. Systematic bias was determined by limits of agreement using Bland–Altman analysis. Variability was examined via the coefficient of variation, interclass correlation coefficient, and typical error of measure. Dependent variables included jump height, contact-time, and reactive strength index (RSI). Mo-Cap held the greatest statistical similarity to force-plates, only overestimating contact-time (+12 ms). G-Flight (+1.3–4 cm) and PUSH (+4.1–4.5 cm) consistently overestimate jump height, while PUSH underestimates contact-time (−24 ms). Correspondingly, RSI was the most valid metric across all technologies. All technologies held small to moderate variably; however, variability was greatest with the G-Flight. While all technologies are practically implementable, practitioners may want to consider budget, athlete characteristics, exercise demands, set-up, and processing time before purchasing the most appropriate equipment.


Sign in / Sign up

Export Citation Format

Share Document