scholarly journals Concurrent Validity and Reliability of Three Ultra-Portable Vertical Jump Assessment Technologies

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7240
Author(s):  
Casey M. Watkins ◽  
Ed Maunder ◽  
Roland van den Tillaar ◽  
Dustin J. Oranchuk

Vertical jump is a valuable training, testing, and readiness monitoring tool used across a multitude of sport settings. However, accurate field analysis has not always been readily available or affordable. For this study, two-dimensional motion capture (Mo-Cap), G-Flight micro-sensor, and PUSH accelerometer technologies were compared to a research-grade force-plate. Twelve healthy university students (7 males, 5 females) volunteered for this study. Each participant performed squat jumps, countermovement jumps, and drop jumps on three separate occasions. Between-device differences were determined using a one-way repeated measures ANOVA. Systematic bias was determined by limits of agreement using Bland–Altman analysis. Variability was examined via the coefficient of variation, interclass correlation coefficient, and typical error of measure. Dependent variables included jump height, contact-time, and reactive strength index (RSI). Mo-Cap held the greatest statistical similarity to force-plates, only overestimating contact-time (+12 ms). G-Flight (+1.3–4 cm) and PUSH (+4.1–4.5 cm) consistently overestimate jump height, while PUSH underestimates contact-time (−24 ms). Correspondingly, RSI was the most valid metric across all technologies. All technologies held small to moderate variably; however, variability was greatest with the G-Flight. While all technologies are practically implementable, practitioners may want to consider budget, athlete characteristics, exercise demands, set-up, and processing time before purchasing the most appropriate equipment.

2020 ◽  
Vol 5 (3) ◽  
pp. 55
Author(s):  
Giancarlo Condello ◽  
Chutimon Khemtong ◽  
Yi-Hua Lee ◽  
Chi-Hsien Chen ◽  
Mauro Mandorino ◽  
...  

The validity and reliability of the Optojump system were investigated for jumping height and flight time in vertical jump tests. Conversely, the purpose of the present study was to investigate the validity and reliability of the Optojump system for measuring contact time and lateral displacement in change of direction and lateral jump tests. Thirty basketball collegiate athletes were tested on two 10 m sprints with a 60° (COD60) or 180° (COD180) change of direction, lateral controlled (CLRJ) and maximal (MLRJ) rebound jump, and lateral countermovement (LCMJ) and squat (LSJ) jump with the concomitant use of two force plates and the Optojump system for the measurement of contact time in COD60, COD180, CLRJ, MLRJ, and lateral jumping distance in all the lateral jump tests. Almost perfect coefficients (r ≥ 0.95) emerged for contact time in COD60, COD180, CLRJ, MLRJ, although a systematic bias was found for COD60 (−0.01 s). Good-to-excellent reliability was found for almost all the measurements of contact time and lateral jumping distance for change of direction and lateral jump tests. Therefore, the use of Optojump system for testing change of direction and lateral jumping abilities should be executed with caution, avoiding misinterpretation of data.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5804 ◽  
Author(s):  
Rejane Maria Cruvinel-Cabral ◽  
Iransé Oliveira-Silva ◽  
André Ricarte Medeiros ◽  
João Gustavo Claudino ◽  
Pedro Jiménez-Reyes ◽  
...  

Background The ability to jump has been related to muscle strength and power, speed and amplitude of the lower limbs movements, and specifically for the elderly, the vertical jump has been shown to be a good predictor of functional capacity and risk of falling. The use of a mobile application (App) which can measure the vertical jump (i.e., iPhone App My Jump) has recently emerged as a simple, cheap and very practical tool for evaluation of jump ability. However, the validity of this tool for the elderly population has not been tested yet. The elderly usually perform very low jumps and therefore the signal-to-noise ratio may compromise the validity and reliability of this method. Thus, the aim of the current study was to verify the validity and reliability of the iPhone App “My Jump” for the evaluation of countermovement jump (CMJ) height within an elderly population. Methods After familiarization, 41 participants performed three CMJs assessed via a contact mat and the My Jump App. The intraclass correlation coefficient (ICC) was used to verify the relative reliability, while the coefficient of variation (CV%) and the typical error of measurement (TEM) were used to verify the absolute reliability. Pearson’s correlation coefficient was used to verify the strength of the relationship between methods (i.e., concurrent validity), a Bland–Altman plot to show their agreement, and the Student’s t-test to identify systematic bias between them. For reliability analyses, all jumps were considered (i.e., 123). All jumps (i.e., 123), the average height of each attempt (i.e., 41), and the highest jump, were considered for validity analyses. Results The CMJ height of the highest jump was 10.78 ± 5.23 cm with contact mat, and 10.87 ± 5.32 with My Jump App, with an identified systematic bias of 0.096 cm (P = 0.007). There was a nearly perfect correlation between methods (r = 0.999; P = 0.000, in all cases) with a very good agreement observed (0.3255 to −0.5177 cm, 0.2797 to −0.5594 cm, and 0.3466 to −0.6264 cm, for highest jump height, average jump height, and all jump heights, respectively). The ICC of the My Jump App was 0.948, the TEM was 1.150 cm, and the CV was 10.10%. Conclusion Our results suggest that the My Jump App is a valid and reliable tool compared to the contact mat for evaluating vertical jump performance in the elderly. Therefore, it allows a simple and practical assessment of lower limbs’ power in this population. For the elderly, as well as for other populations with low jumping heights, the highest jump height and the average jump height could be used indistinctly.


2021 ◽  
pp. 149-157
Author(s):  
Manuel V. Garnacho-Castaño ◽  
Marcos Faundez-Zanuy ◽  
Noemí Serra-Payá ◽  
José L. Maté-Muñoz ◽  
Josep López-Xarbau ◽  
...  

This study aimed to assess the reliability and validity of the Polar V800 to measure vertical jump height. Twenty-two physically active healthy men (age: 22.89 ± 4.23 years; body mass: 70.74 ± 8.04 kg; height: 1.74 ± 0.76 m) were recruited for the study. The reliability was evaluated by comparing measurements acquired by the Polar V800 in two identical testing sessions one week apart. Validity was assessed by comparing measurements simultaneously obtained using a force platform (gold standard), high-speed camera and the Polar V800 during squat jump (SJ) and countermovement jump (CMJ) tests. In the test-retest reliability, high intraclass correlation coefficients (ICCs) were observed (mean: 0.90, SJ and CMJ) in the Polar V800. There was no significant systematic bias ± random errors (p > 0.05) between test-retest. Low coefficients of variation (<5%) were detected in both jumps in the Polar V800. In the validity assessment, similar jump height was detected among devices (p > 0.05). There was almost perfect agreement between the Polar V800 compared to a force platform for the SJ and CMJ tests (Mean ICCs = 0.95; no systematic bias ± random errors in SJ mean: -0.38 ± 2.10 cm, p > 0.05). Mean ICC between the Polar V800 versus high-speed camera was 0.91 for the SJ and CMJ tests, however, a significant systematic bias ± random error (0.97 ± 2.60 cm; p = 0.01) was detected in CMJ test. The Polar V800 offers valid, compared to force platform, and reliable information about vertical jump height performance in physically active healthy young men.


2018 ◽  
Vol 34 (5) ◽  
pp. 410-413 ◽  
Author(s):  
Jason Lake ◽  
Peter Mundy ◽  
Paul Comfort ◽  
John J. McMahon ◽  
Timothy J. Suchomel ◽  
...  

This study examined concurrent validity of countermovement vertical jump reactive strength index modified and force–time characteristics recorded using a 1-dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral countermovement vertical jumps on 2 portable force plates placed on top of 2 in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to takeoff; jump height; reactive strength index modified; and braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r ≥ .99). There were small (d < 0.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (P < .001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% confidence limits, 0.9%–2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement were for jump height (2.1%), time to takeoff (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force–time variables, from unloaded countermovement vertical jump. Thus, practitioners can use both force plates interchangeably.


2020 ◽  
Vol 29 (7) ◽  
pp. 879-885
Author(s):  
Haley Bookbinder ◽  
Lindsay V. Slater ◽  
Austin Simpson ◽  
Jay Hertel ◽  
Joseph M. Hart

Context: Many clinicians measure lower-extremity symmetry after anterior cruciate ligament reconstruction (ACLR); however, testing is completed in a rested state rather than postexercise. Testing postexercise may better model conditions under which injury occurs. Objective: To compare changes in single-leg performance in healthy and individuals with history of ACLR before and after exercise. Design: Repeated-measures case-control. Setting: Laboratory. Patients: Fifty-two subjects (25 control and 27 ACLR). Intervention: Thirty minutes of exercise. Main Outcome Measures: Limb symmetry and involved limb performance (nondominant for healthy) for single-leg hop, ground contact time, and jump height during the 4-jump test. Cohen d effect sizes were calculated for all differences identified using a repeated-measures analysis of variance. Results: Healthy controls hopped farther than ACLR before (d = 0.65; confidence interval [CI], 0.09 to 1.20) and after exercise (d = 0.60; CI, 0.04 to 1.15). Those with ACLR had longer ground contact time on the reconstructed limb compared with the uninvolved limb after exercise (d = 0.53; CI, −0.02 to 1.09), and the reconstructed limb had greater ground contact time compared with the healthy control limb after exercise (d = 0.38; CI, −0.21 to 0.73). ACLR were less symmetrical than healthy before (d = 0.38; CI, 0.17 to 0.93) and after exercise (d = 0.84; CI, 0.28 to 1.41), and the reconstructed limb demonstrated decreased jump height compared with the healthy control limbs before (d = 0.75; CI, 0.19 to 1.31) and after exercise (d = 0.79; CI, 0.23 to 1.36). Conclusions: ACLR became more symmetric, which may be from adaptations of the reconstructed limb after exercise. Changes in performance and symmetry may provide additional information regarding adaptations to exercise after reconstruction.


2020 ◽  
Vol 10 (11) ◽  
pp. 3805 ◽  
Author(s):  
Špela Bogataj ◽  
Maja Pajek ◽  
Slobodan Andrašić ◽  
Nebojša Trajković

This study aimed to examine the reliability, validity, and usefulness of the smartphone-based application, My Jump 2, against Optojump in recreationally active adults. Participants (18 women, 28.9 ± 5.6 years, and 26 men, 30.1 ± 10.6 years) completed squat jumps (SJ), counter-movement jumps (CMJ), and CMJ with arm swing (CMJAS) on Optojump and were simultaneously recorded using My Jump 2. To evaluate concurrent validity, jump height, calculated from flight time attained from each device, was compared for each jump type. Test-retest reliability was determined by replicating data analysis of My Jump 2 recordings on two occasions separated by two weeks. High test-retest reliability (Intraclass correlation coefficient (ICC) > 0.93) was observed for all measures in both male and female athletes. Very large correlations were observed between the My Jump 2 app and Optojump for SJ (r = 0.95, p = 0.001), CMJ (r = 0.98, p = 0.001), and CMJAS (r = 0.98, p = 0.001) in male athletes. Similar results were obtained for female recreational athletes for all jumps (r > 0.94, p = 0.001). The study results suggest that My Jump 2 is a valid, reliable, and useful tool for measuring vertical jump in recreationally active adults. Therefore, due to its simplicity and practicality, it can be used by practitioners, coaches, and recreationally-active adults to measure vertical jump performance with a simple test as SJ, CMJ, and CMJAS.


2010 ◽  
Vol 2 (2) ◽  
pp. 3481
Author(s):  
Christian Baumgart ◽  
Volker Lange-Berlin ◽  
Rüdiger Hofmann ◽  
Jürgen Freiwald

Author(s):  
Victor Coswig ◽  
Anselmo De Athayde Costa E Silva ◽  
Matheus Barbalho ◽  
Fernando Rosch De Faria ◽  
Claudio D Nogueira ◽  
...  

BACKGROUND Vertical jumps can be used to assess neuromuscular status in sports performance. This is particularly important in Cerebral Palsy Football (CP Football) because players are exposed to high injury risk, but it may be complicated because the gold standard for assessing jump performance is scarce in field evaluation. Thus, field techniques, such as mobile apps, have been proposed as an alternative method for solving this problem. OBJECTIVE This study aims to evaluate the reliability of the measures of the MyJump2 app to assess vertical jump performance in professional CP Football. METHODS We assessed 40 male CP Football athletes (age 28.1 [SD 1.4] years, weight 72.5 [SD 6.2] kg, and height 176 [SD 4.2] cm) through the countermovement jump (CMJ) and squat jump (SJ) using a contact mat. At the same time, we assessed the athletes using the MyJump2 app. RESULTS There were no significant differences between the instruments in SJ height (P=.12) and flight time (P=.15). Additionally, there were no significant differences between the instruments for CMJ in jump height (P=.16) and flight time (P=.13). In addition, it was observed that there were significant and strong intraclass correlations in all SJ variables varying from 0.86 to 0.89 (both P<.001), which was classified as “almost perfect.” Similar results were observed in all variables from the CMJ, varying from 0.92 to 0.96 (both P ≤.001). CONCLUSIONS We conclude that the MyJump2 app presents high validity and reliability for measuring jump height and flight time of the SJ and CMJ in CP Football athletes.


2021 ◽  
Vol 80 (1) ◽  
pp. 173-184
Author(s):  
Julio Cesar Barbosa de Lima Pinto ◽  
Romerito Sóstenes Canuto de Oliveira ◽  
Nicole Leite Galvão-Coelho ◽  
Raissa Nóbrega de Almeida ◽  
Alexandre Moreira ◽  
...  

Abstract The study aim was to analyze the effects of successive matches on the internal match load, stress tolerance, salivary cortisol concentration and countermovement vertical jump height in twelve youth soccer players (16.6 ± 0.5 yr; 175 ± 8 cm; 65 ± 8 kg) who performed four official matches within a four day-period with a 24-h recovery interval between the matches. The internal match load, monotony index and competitive strain, as well as stress tolerance were examined. Saliva samples were collected and countermovement vertical jump height was assessed 60 min pre and 30 min post each match; delta of salivary cortisol and countermovement vertical jump height for each match were analyzed. Salivary cortisol was analyzed using an enzyme-linked immunosorbent assay. The results of ANOVA with repeated measures showed no differences between matches for the internal match load (p > 0.05). The scores of the monotony index and competitive strain were 4.3 (±2.3) and 8104 (±6795) arbitrary units, respectively. There was no difference for stress tolerance between matches (p > 0.05). Delta values of salivary cortisol were not different among the assessed matches (F(3,33) = 1.397, p = 0.351, η2: 0.09); however, delta of countermovement vertical jump height decreased from match 1 to match 4 (F(3,33) = 8.64, p < 0.001, η2: 0.44). The current findings suggest that participating in four successive matches, with 24-h of recovery in between, may not lead to changes in stress tolerance and salivary cortisol of youth players, but it may induce a decrease in players’ jumping performance after the fourth match.


Sign in / Sign up

Export Citation Format

Share Document