Pomegranate seed oil and bitter melon extract supplemented in diet influence the lipid profile and intensity of peroxidation in livers of SPRD rats exposed to a chemical carcinogen

2021 ◽  
Vol 152 ◽  
pp. 106495
Author(s):  
Tomasz Lepionka ◽  
Małgorzata Białek ◽  
Marian Czauderna ◽  
Agnieszka Białek
2019 ◽  
Vol 142 ◽  
pp. 33-45 ◽  
Author(s):  
Tomasz Lepionka ◽  
Agnieszka Białek ◽  
Małgorzata Białek ◽  
Marian Czauderna ◽  
Agnieszka Stawarska ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5232
Author(s):  
Agnieszka Stawarska ◽  
Tomasz Lepionka ◽  
Agnieszka Białek ◽  
Martyna Gawryjołek ◽  
Barbara Bobrowska-Korczak

Pomegranate seed oil (PSO) and bitter melon dried fruits (BME) are used as natural remedies in folk medicine and as dietary supplements. However, the exact mechanism of their beneficial action is not known. The aim of study was to assess how the diet supplementation with PSO and/or with an aqueous solution of Momordica charantia affects the metabolism of fatty acids, fatty acids composition and the level of prostaglandin E2 (PGE2) in rat liver. Animals (Sprague-Dawley female rats, n = 48) were divide into four equinumerous groups and fed as a control diet or experimental diets supplemented with PSO, BME or both PSO and BME for 21 weeks. Fatty acids were determined using gas chromatography with flame ionization detection. PSO added to the diet increased the rumenic acid content (p < 0.0001) and increased accumulation of n-6 fatty acids (p = 0.0001) in hepatic tissue. Enrichment of the diet either with PSO or with BME reduced the activity of Δ6-desaturase (D6D) (p = 0.0019), whereas the combination of those dietary factors only slightly increased the effect. Applied dietary supplements significantly reduced the PGE2 level (p = 0.0021). No significant intensification of the influence on the investigated parameters resulted from combined application of PSO and BME. PSO and BME have potential health-promoting properties because they influence fatty acids composition and exhibit an inhibiting effect on the activity of desaturases and thus they contribute to the reduction in the metabolites of arachidonic acid (especially PGE2).


2019 ◽  
Vol 15 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Surbhi Dhawan ◽  
Sanju Nanda

Background: Since ancient times, people have been using natural resources for photoprotection purposes. One such highly recognised natural agent is pomegranate seed oil, considered as wonder oil owing to the presence of several beneficial phytoconstituents. </P><P> Objective: The study aimed to establish the photoprotective potential of pomegranate seed oil through various in vitro and biochemical studies along with the formation of nanoemulsion, an efficient topical delivery system for the oil. </P><P> Method: Photo-protective potential of the oil was estimated by determining in vitro antioxidant and anti-inflammatory activity, total phenolic content, anti elastase, antihyaluronidase and anticollagenase activities of the oil. Ultrasonication method was used to formulate nanoemulsions. The optimisation was done following the central composite design. The characterisation was done by particle size analysis, zeta potential, polydispersity index, pH, viscosity, stability testing and transmission electron microscopy. The optimised nanoemulsion was loaded into a gel base for topical application and further release studies were carried out. </P><P> Results: The IC50 values of anti-elastase, anti-collagenase and anti-hyaluronidase were found to be 309 mg/ml, 4 mg/ml and 95 mg/ml respectively. The results of anti-oxidant and anti-inflammatory activity were also significant, which thereby established the photo-protective potential of the oil. The optimum batch 2 had particle size 83.90 nm, 0.237 PDI and -5.37 mV zeta potential. The morphology was confirmed by TEM. Batch 2 was incorporated into a gel base and release studies showed 74.12 % release within 7 hours. </P><P> Conclusion: Pomegranate seed oil possesses a potential photo-protective ability. Nanoemulsions proved to be a promising carrier for the topical delivery of the oil.


Author(s):  
E. Rojo-Gutiérrez ◽  
O. Carrasco-Molinar ◽  
J. M. Tirado-Gallegos ◽  
A. Levario-Gómez ◽  
M. L. Chávez-González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document