Agent-Based model to predict the fate of the degradation of organic compounds in the aqueous-phase UV/H2O2 advanced oxidation process

2020 ◽  
Vol 136 ◽  
pp. 49-55
Author(s):  
Robert Zupko ◽  
Divya Kamath ◽  
Erica Coscarelli ◽  
Mark Rouleau ◽  
Daisuke Minakata
2021 ◽  
Author(s):  
Bijoli Mondal ◽  
Shib Sankar Basak ◽  
Arnab Das ◽  
Sananda Sarkar ◽  
Asok Adak

Abstract In the photochemical UV-H2O2 advanced oxidation process, H2O2 absorbs UV light and is decomposed to form hydroxyl radicals (OH·), which are highly excited and reactive for electron-rich organic compounds and hence can degrade organic compounds. In the present work, the UV-H2O2 process was investigated to degrade ciprofloxacin (CIP), one of India's widely used antibiotics, from aqueous solutions using a batch type UV reactor having photon flux = 1.9 (± 0.1) ×10-4 Einstein L-1 min-1. The effects of UV irradiation time on CIP degradation were investigated for both UV and UV-H2O2 processes. It was found that about 75% degradation of CIP was achieved within 60 s with initial CIP concentration and peroxide concentration of 10 mg L-1 and 1 mol H2O2/ mol CIP, respectively, at pH of 7(±0.1) and fluence dose of 113 mJ cm-2. The experimental data were analyzed by the first-order kinetics model to find out the time- and fluence-based degradation rate constants. Under optimized experimental conditions (initial CIP concentration, pH and H2O2 dose of 10 mg L-1, 7(±0.1) and 1.0 mol H2O2 / mol CIP, respectively), the fluence-based pseudo-first-order rate constant for the UV and UV-H2O2 processes were determined to be 1.28(±0.0) ×10-4 and 1.20(±0.04) ×10-2 cm2 mJ-1 respectively. The quantum yields at various pH under direct UV were calculated. The impacts of different process parameters such as H2O2 concentration, solution pH, initial CIP concentration, and wastewater matrix on CIP degradation were also investigated in detail. CIP degradation was favorable in acidic conditions. Six degradation products of CIP were identified. Results clearly showed the potentiality of the UV-H2O2 process for the degradation of antibiotics in wastewater.


2019 ◽  
Vol 6 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Manjari Srivastav ◽  
Meenal Gupta ◽  
Sushil K. Agrahari ◽  
Pawan Detwal

Per capita average annual freshwater availability is gradually reduced due to increasing population, urbanization and affluent lifestyles. Hence, management of wastewater is of great concern. The wastewater from different industries can be treated by various conventional treatment methods but these conventional treatment technologies seem to be ineffective for the complete removal of pollutants especially refractory organic compounds that are not readily biodegradable in nature. Detergents, detergent additives, sequestering agents like EDTA, Pesticides, Polycyclic aromatic hydrocarbons, etc. are some of the recalcitrant organic compounds found in the wastewater. One of the treatment technologies for the removal of recalcitrant organic compounds is Advanced Oxidation Process (AOP). The production of hydroxyl free radical is the main mechanism for the AOP. AOP is a promising technology for the treatment of refractory organic compounds due to its low oxidation selectivity and high reactivity of the radical. Hydrogen peroxide (H2O2), Ozonation, Ultra-violet (UV) radiation, H2O2/UV process and Fenton’s reaction are extensively used for the removal of refractory organic compounds thus reducing Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), phenolic compounds, dyes etc. to great extent. From the studies, we found that Fenton’s reagents appear to be most economically practical AOP systems for almost all industries with respect to high pollutant removal efficiency and it is also economical. From the energy point of view, the ozone based process proves to be more efficient but it is costlier than the Fenton’s process.


2018 ◽  
Vol 4 (9) ◽  
pp. 1231-1238 ◽  
Author(s):  
Divya Kamath ◽  
Daisuke Minakata

An elementary reaction based kinetic model was developed for the fate of acetone degradation in UV/free chlorine advanced oxidation process.


2020 ◽  
Vol 231 (2) ◽  
Author(s):  
Claudia Mejía-Morales ◽  
Fernando Hernández-Aldana ◽  
Diego M. Cortés-Hernández ◽  
J. Antonio Rivera-Tapia ◽  
Dolores Castañeda-Antonio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document