scholarly journals Viability of Salmonella Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature

2020 ◽  
Vol 99 (9) ◽  
pp. 4558-4565
Author(s):  
Ki-Hoon Lee ◽  
Ji-Young Lee ◽  
Pantu Kumar Roy ◽  
Md. Furkanur Rahaman Mizan ◽  
Md. Iqbal Hossain ◽  
...  
2013 ◽  
Vol 76 (4) ◽  
pp. 662-667 ◽  
Author(s):  
M. CORCORAN ◽  
D. MORRIS ◽  
N. DE LAPPE ◽  
J. O'CONNOR ◽  
P. LALOR ◽  
...  

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.


2017 ◽  
Vol 81 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Woo-Ju Kim ◽  
Ki-Ok Jeong ◽  
Dong-Hyun Kang

ABSTRACT Following sanitation interventions in food processing facilities, sublethally injured bacterial cells can remain on food contact surfaces. We investigated whether injured Salmonella Typhimurium cells can attach onto abiotic surfaces, which is the initial stage for further biofilm development. We utilized heat, UV, hydrogen peroxide, and lactic acid treatments, which are widely utilized by the food industry. Our results showed that heat, UV, and hydrogen peroxide did not effectively change populations of attached Salmonella Typhimurium. Cells treated with hydrogen peroxide had a slightly higher tendency to adhere to abiotic surfaces, although there was no significant difference between the populations of control and hydrogen peroxide–treated cells. However, lactic acid effectively reduced the number of Salmonella Typhimurium cells attached to stainless steel. We also compared physicochemical changes of Salmonella Typhimurium after application of lactic acid and used hydrogen peroxide as a positive control because only lactic acid showed a decreased tendency for attachment and hydrogen peroxide induced slightly higher numbers of attached bacteria cells. Extracellular polymeric substance produced by Salmonella Typhimurium was not detected in any treatment. Significant differences in hydrophobicity were not observed. Surface charges of cell membranes did not show relevant correlation with numbers of attached cells, whereas autoaggregation showed a positive correlation with attachment to stainless steel. Our results highlight that when lactic acid is applied in a food processing facility, it can effectively interfere with adhesion of injured Salmonella Typhimurium cells onto food contact surfaces.


2014 ◽  
Vol 64 ◽  
pp. 849-854 ◽  
Author(s):  
San-Cheong Bae ◽  
Shin Young Park ◽  
An-Na Kim ◽  
Mi-Hwa Oh ◽  
Sang-Do Ha

2007 ◽  
Vol 70 (10) ◽  
pp. 2273-2280 ◽  
Author(s):  
GINNY MOORE ◽  
IAN S. BLAIR ◽  
DAVID A. McDOWELL

Domestic food contact surfaces can play an important role in the transmission of foodborne disease, yet debate continues as to which surface materials pose the greatest risk to consumer health in terms of cross-contamination during food preparation. Salmonella Typhimurium was inoculated onto stainless steel, Formica, polypropylene, or wooden surfaces (25 cm2) in the presence or absence of protein (tryptic soy broth supplemented with 5% horse serum) and held at room temperature. The pathogen was recovered from the test surfaces immediately after inoculation (T = 0) and every hour for up to 6 h, by a conventional microbiological sampling technique and by direct transfer onto a model ready-to-eat food (cucumber slices). On all surfaces, pathogen numbers declined during the 6-h holding period, with the most rapid reductions occurring within the first hour. The presence of protein significantly increased (P < 0.05) the number of bacteria recovered from all surface types. However, regardless of application medium or holding time, the number of bacteria recovered from Formica (in all cases) and stainless steel (in most cases) was significantly higher than were the numbers on polypropylene or wood. Similarly, regardless of application medium or holding time, significantly higher bacterial numbers were transferred to the model food from Formica or stainless steel than from polypropylene or wooden surfaces. These differences were greater when the bacteria were applied in a protein-rich medium and the test surfaces held for 1 h or more. The results of this study emphasize that differences, both in recoverability and in the number of bacteria transferred to the model food rather than simply reflecting differences in pathogen survival, may also reflect differences in the ability of the test bacteria to remobilize from the different surface types. However, the results also demonstrate a fundamental problem when choosing food contact surfaces, i.e., that those characteristics that make a surface “easy to clean” may also render it more likely to release contaminating pathogens during common food preparation practices.


2021 ◽  
Vol 31 (3) ◽  
pp. 439-446
Author(s):  
Peetitas Damrongsaktrakul ◽  
Songsirin Ruengvisesh ◽  
Arewan Rahothan ◽  
Nuttamon Sukhumrat ◽  
Pravate Tuitemwong ◽  
...  

2021 ◽  
Vol 336 ◽  
pp. 108897
Author(s):  
Shamsun Nahar ◽  
Angela Jie-won Ha ◽  
Kye-Hwan Byun ◽  
Md. Iqbal Hossain ◽  
Md. Furkanur Rahaman Mizan ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Niels Demaître ◽  
Geertrui Rasschaert ◽  
Lieven De Zutter ◽  
Annemie Geeraerd ◽  
Koen De Reu

The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.


Sign in / Sign up

Export Citation Format

Share Document