Holocene sea-level changes along the North Carolina Coastline and their implications for glacial isostatic adjustment models

2009 ◽  
Vol 28 (17-18) ◽  
pp. 1725-1736 ◽  
Author(s):  
B.P. Horton ◽  
W.R. Peltier ◽  
S.J. Culver ◽  
R. Drummond ◽  
S.E. Engelhart ◽  
...  
2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


2019 ◽  
Author(s):  
Maren Bender ◽  
Thomas Mann ◽  
Paolo Stocchi ◽  
Dominik Kneer ◽  
Tilo Schöne ◽  
...  

Abstract. Indonesia is a country composed of several thousand islands, many of them small, low-lying and densely inhabited. These are, in particular, subject to high risk of inundation due to future relative sea level changes. The Spermonde Archipelago, off the coast of Southwest Sulawesi, consists of more than 100 small islands. This study presents a dataset of 24 sea-level index points from fossil microatolls, surveyed on five islands in the Spermonde Archipelago and compares these new results with published data from the same region and with relative sea level predictions from different Glacial Isostatic Adjustment (GIA) models. The newly surveyed fossil microatolls are located around the islands of Tambakulu, Suranti (both ~ 60 km offshore of Makassar city), Bone Batang and Kodingareng Keke (both located in the center of the Archipelago) and Sanrobengi (located ~ 20 km south-southwest of Makassar). Results from the near- and mid-shelf islands indicate that relative sea level between 4 to 6 ka BP was less than one meter above present sea level. The only exception to this pattern is the heavily populated island of Barrang Lompo, where we record a significant subsidence when compared to the other islands. These new results support the conclusions from a previous dataset and are relevant to constrain late Holocene ice melting scenarios. Samples from the two outer islands (Tambakulu and Suranti) yielded ages spanning the Common Era that represent, to our knowledge, the first reported for the entire Southeast Asian region.


2021 ◽  
Vol 13 (8) ◽  
pp. 3733-3753
Author(s):  
Denise Dettmering ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Marcello Passaro ◽  
Christian Schwatke ◽  
...  

Abstract. Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data preprocessed with coastal dedicated approaches and gridded with an innovative least-squares procedure including an advanced outlier detection to a 6–8 km wide triangular mesh. The comparison of SLAs and tide gauge time series shows good consistency, with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8 %–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best consistency with a median difference of 0.04±1.15 mm yr−1 is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections, and studies on coastal adaptation measures. The North SEAL data are available at https://doi.org/10.17882/79673 (Müller et al., 2021).


2021 ◽  
Author(s):  
Denise Dettmering ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Marcello Passaro ◽  
Christian Schwatke ◽  
...  

Abstract. Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal and economic issues. This article reports about a new sea level dataset for the North Sea (named NorthSEAL) of monthly sea level anomalies (SLA), absolute sea level trends and sea level mean annual amplitudes over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data, preprocessed 5 with coastal dedicated approaches and gridded with innovative methods to a 6–8 km wide triangular mesh. The comparison of SLA and tide gauge time series shows a good consistency with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best 10 consistency with a median difference of 0.04 ± 1.15 mm/year is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections and studies on coastal adaptation measures. The NorthSEAL data is available at https://doi.org/10.17882/79673 (Müller et al., 2021).


2008 ◽  
Vol 69 (1) ◽  
pp. 97-109 ◽  
Author(s):  
David Mallinson ◽  
Kevin Burdette ◽  
Shannon Mahan ◽  
George Brook

Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2 ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26 m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2 ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism.


The Holocene ◽  
2021 ◽  
pp. 095968362110259
Author(s):  
Martin Seeliger ◽  
Anna Pint ◽  
Peter Frenzel ◽  
Nick Marriner ◽  
Giorgio Spada ◽  
...  

We combined biostratigraphical analyses, archaeological surveys, and Glacial Isostatic Adjustment (GIA) models to provide new insights into the relative sea-level evolution in the northeastern Aegean Sea (eastern Mediterranean). In this area, characterized by a very complex tectonic pattern, we produced a new typology of sea-level index point, based on the foraminiferal associations found in transgressive marine facies. Our results agree with the sea-level history previously produced in this region, therefore confirming the validity of this new type of index point. The expanded dataset presented in this paper further demonstrates a continuous Holocene RSL rise in this portion of the Aegean Sea. Comparing the new RSL record with the available geophysical predictions of sea-level evolution indicates that the crustal subsidence of the Samothraki Plateau and the North Aegean Trough played a major role in controlling millennial-scale sea-level evolution in the area. This major subsidence rate needs to be taken into account in the preparation of local future scenarios of sea-level rise in the coming decades.


Sign in / Sign up

Export Citation Format

Share Document