Carbon fiber pressure vessel for deep sea research

2020 ◽  
Vol 64 (4) ◽  
pp. 170
Author(s):  
Valter Luiz Jantara Junior ◽  
Mayorkinos Papaelias
Keyword(s):  
Deep Sea ◽  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 683
Author(s):  
Xinfeng Wu ◽  
Yuan Gao ◽  
Tao Jiang ◽  
Ying Wang ◽  
Ke Yang ◽  
...  

Because the aerogel has ultra-low density and good impact resistance, the aerogel material, epoxy-hardener system, and expandable polystyrene beads (EPS) were used to prepare the lightweight aerogel reinforced hollow epoxy macro-spheres (AR-HEMS). The multi-phase epoxy syntactic foam (ESF) was manufactured with the epoxy-hardener system, HGMS (EP-hardener-HGMS), and AR-HEMS by “the compression modeling method.” In this experiment, in order to enhance the strength of the ESF, some different kinds of the carbon fiber (CF) were added into the EP-hardener-HGMS system (CFR-EP). The influence of the volume stacking fraction, inner diameter, and layer of the AR-HEMS and the content and type of the CF in the EP-HGMS (CFR-EP) system on the compressive strength of the ESF were studied. Weighing the two factors of the density and compressive strength, the ESF reinforced by 1.5 wt% CF with 90% AR-HEMS has the better performance. This kind of the ESF has 0.428 g/cm3 nd 20.76 Mpa, which could be applied in 2076 m deep sea.


Author(s):  
Matthias Golz ◽  
Florin Boeck ◽  
Sebastian Ritz ◽  
Gerd Holbach

The efforts to discover the world’s oceans — even in extremely deep-sea environments — have grown more and more in the past years. In this context, unmanned underwater vehicles play a central role. Underwater systems that are not tethered need to provide an apparatus to ensure a safe return to the surface. Therefore, positive buoyancy is required and can be achieved by either losing weight or expanding volume. A conservative method is the dropping of ballast weight. However, nowadays this method is not appropriate due to the environmental impact. This paper presents a ballast system for an automated ascent of a deep-sea seabed station in up to 6000 m depth. The ballast system uses a DC motor driven modified hydraulic pump and a compressed air auxiliary system inside a pressure vessel. With regard to the environmental contamination in case of a leakage, only water is used as ballast fluid. The modification of an ordinary oil-hydraulic radial piston pump and the set-up of the ballast system is introduced. Results from sea trials in the Atlantic Ocean are presented to verify the functionality of the ballast system.


Sign in / Sign up

Export Citation Format

Share Document