scholarly journals Carbon Fiber Reinforced Multi-Phase Epoxy Syntactic Foam (CFR-Epoxy-Hardener/HGMS/Aerogel-R-Hollow Epoxy Macrosphere(AR-HEMS))

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 683
Author(s):  
Xinfeng Wu ◽  
Yuan Gao ◽  
Tao Jiang ◽  
Ying Wang ◽  
Ke Yang ◽  
...  

Because the aerogel has ultra-low density and good impact resistance, the aerogel material, epoxy-hardener system, and expandable polystyrene beads (EPS) were used to prepare the lightweight aerogel reinforced hollow epoxy macro-spheres (AR-HEMS). The multi-phase epoxy syntactic foam (ESF) was manufactured with the epoxy-hardener system, HGMS (EP-hardener-HGMS), and AR-HEMS by “the compression modeling method.” In this experiment, in order to enhance the strength of the ESF, some different kinds of the carbon fiber (CF) were added into the EP-hardener-HGMS system (CFR-EP). The influence of the volume stacking fraction, inner diameter, and layer of the AR-HEMS and the content and type of the CF in the EP-HGMS (CFR-EP) system on the compressive strength of the ESF were studied. Weighing the two factors of the density and compressive strength, the ESF reinforced by 1.5 wt% CF with 90% AR-HEMS has the better performance. This kind of the ESF has 0.428 g/cm3 nd 20.76 Mpa, which could be applied in 2076 m deep sea.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4693
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar composites were tested for inverted slump cone flow (flow time and volume flow), unit weight, air content, compressive strength, flexural strength, impact resistance, and water absorption. The cost-effectiveness of CFRM was assessed based on the performance to cost ratio (PCR), which was calculated for each mortar composite, considering its workability, mechanical properties, and durability. The inverted slump cone volume flow was counted as a measure of workability, whereas the compressive strength, flexural strength, and impact resistance were considered as the major attributes of the mechanical behavior. In addition, the water absorption was used as a measure of durability. The test results revealed that the mortar composite made with 3% carbon fibers provided adequate workability, a relatively high unit weight and low air content, the highest compressive strength, excellent flexural strength, good impact resistance, and the lowest water absorption. It was also found that the PCR increased up to 3% carbon fibers. Beyond a 3% fiber content, the PCR significantly decreased. The overall research findings revealed that the mortar with 3% carbon fibers was the optimum and most cost-effective mortar composite.


2014 ◽  
Vol 977 ◽  
pp. 120-123 ◽  
Author(s):  
Rui Li ◽  
Xiao Hua Zhang ◽  
Yun Fang Meng

High strength fly ash ceramsite concrete has the advantages of low density, high compressive strength, but the brittleness is too large, limiting its application in engineering. In order to solve this problem, we used Carbon fiber in the orthogonal test. The results show that Carbon fiber can obviously improve the tension compression ratio of fly ash ceramisite concrete, improve the strength of fly ash ceramsite concrete brittleness.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2021 ◽  
Vol 11 (7) ◽  
pp. 354
Author(s):  
Waleed Ahmed ◽  
Essam Zaneldin ◽  
Amged Al Hassan

With the rapid growth in the manufacturing industry and increased urbanization, higher amounts of composite material waste are being produced, causing severe threats to the environment. These environmental concerns, coupled with the fact that undergraduate students typically have minimal experience in research, have initiated the need at the UAE University to promote research among undergraduate students, leading to the development of a summer undergraduate research program. In this study, a recycling methodology is presented to test lab-fabricated Carbon-Fiber-Reinforced Polymer (CFRP) for potential applications in industrial composite waste. The work was conducted by two groups of undergraduate students at the UAE University. The methodology involved the chemical dissolution of the composite waste, followed by compression molding and adequate heat treatment for rapid curing of CFRP. Subsequently, the CFRP samples were divided into three groups based on their geometrical distinctions. The mechanical properties (i.e., modulus of elasticity and compressive strength) were determined through material testing, and the results were then compared with steel for prompt reference. The results revealed that the values of mechanical properties range from 2 to 4.3 GPa for the modulus of elasticity and from 203.7 to 301.5 MPa for the compressive strength. These values are considered competitive and optimal, and as such, carbon fiber waste can be used as an alternate material for various structural applications. The inconsistencies in the values are due to discrepancies in the procedure as a result of the lack of specialized equipment for handling CFRP waste material. The study concluded that the properties of CFRP composite prepreg scrap tend to be reusable instead of disposable. Despite the meager experimental discrepancies, test values and mechanical properties indicate that CFRP composite can be successfully used as a material for nonstructural applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 2073 ◽  
Author(s):  
Hossein Mohammadhosseini ◽  
Rayed Alyousef ◽  
Mahmood Md. Tahir

Recycling of waste plastics is an essential phase towards cleaner production and circular economy. Plastics in different forms, which are non-biodegradable polymers, have become an indispensable ingredient of human life. The rapid growth of the world population has led to increased demand for commodity plastics such as food packaging. Therefore, to avert environment pollution with plastic wastes, sufficient management to recycle this waste is vital. In this study, experimental investigations and statistical analysis were conducted to assess the feasibility of polypropylene type of waste plastic food tray (WPFT) as fibrous materials on the mechanical and impact resistance of concrete composites. The WPFT fibres with a length of 20 mm were used at dosages of 0–1% in two groups of concrete with 100% ordinary Portland cement (OPC) and 30% palm oil fuel ash (POFA) as partial cement replacement. The results revealed that WPFT fibres had an adverse effect on the workability and compressive strength of concrete mixes. Despite a slight reduction in compressive strength of concrete mixtures, tensile and flexural strengths significantly enhanced up to 25% with the addition of WPFT fibres. The impact resistance and energy absorption values of concrete specimens reinforced with 1% WPFT fibres were found to be about 7.5 times higher than those of plain concrete mix. The utilisation of waste plastic food trays in the production of concrete makes it low-cost and aids in decreasing waste discarding harms. The development of new construction materials using WPFT is significant to the environment and construction industry.


2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4273
Author(s):  
Jian Zhang ◽  
Xiaojun Wang ◽  
Xinjun Fu

Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2249-2263
Author(s):  
María Alejandra Ramírez-Ramírez ◽  
Artemio Carrillo-Parra ◽  
Faustino Ruíz-Aquino ◽  
Luis Fernando Pintor-Ibarra ◽  
Nicolás González-Ortega ◽  
...  

This research characterized briquettes made with Pinus spp. sawdust without the use of additives. For this purpose, 19 samples of sawdust from different wood industries located in five states of the Mexican Republic were used. The densification process was carried out in a vertical hydraulic piston laboratory briquette machine. The briquettes were made with 40 g of sawdust, at 50 °C, 20 kPa and pressing for 5 min. The results obtained varied as follows: moisture content (4.1% to 7.2%), density (813.9 to 1,014.4 kg/m3), volumetric expansion (7.4% to 37.3%), compressive strength (4.9 to 40.8 N/mm), impact resistance index (46.7% to 200%), ash (0.1% to 1.1%), volatile matter (82.9% to 90.7%), fixed carbon (8.9% to 16.4%), and calorific value (20.5 to 22.8 MJ/kg). The density of the briquettes was within the “acceptable” classification (800 to 1,200 kg/m3). It was observed that, the higher the density, the lower the volumetric expansion, the higher the compressive strength, and the higher the impact resistance index. According to the ash content, the briquettes could achieve international quality. Due to high volatile matter values, rapid combustion of the briquettes with little generation of toxic smoke would be expected. Fixed carbon and calorific value results were acceptable.


Sign in / Sign up

Export Citation Format

Share Document