P51—Decline of perfluorooctanoic acid in human serum over two years before and after granular activated carbon filtration in two public water supplies, and implications for half-life estimation

2012 ◽  
Vol 33 (4) ◽  
pp. 616
Author(s):  
Scott M. Bartell ◽  
Christopher Lyu ◽  
P. Barry Ryan ◽  
Kyle Steenland
2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1830 ◽  
Author(s):  
Jia Niu ◽  
Ikuro Kasuga ◽  
Futoshi Kurisu ◽  
Hiroaki Furumai

Granular activated carbon (GAC) has been widely introduced to advanced drinking water purification plants to remove organic matter and ammonium. Backwashing, which is the routine practice for GAC maintenance, is an important operational factor influencing the performance of GAC and its microbial biomass. In this study, the effects of backwashing on the ammonium removal potential of GAC were evaluated. In addition, abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) on GAC were analyzed. GAC samples before and after backwashing were collected from a full-scale drinking water purification plant. Samplings were conducted before and after implementation of prechlorination of raw water. The results showed that the ammonium removal potential of the GAC increased by 12% after backwashing before prechlorination (p < 0.01). After implementing the prechlorination, the ammonium removal potential of the GAC decreased by 12% even after backwashing (p < 0.01). The AOA was predominant on the GAC in the two samplings. Regardless of prechlorination, the amounts of the AOA and the AOB remained at the same level before and after backwashing. Analysis of the backwashing water indicated that the amounts of the AOA and AOB washed out from the GAC were negligible (0.08%–0.26%) compared with their original amounts on the GAC. These results revealed the marginal role of backwashing on the biomass of ammonia oxidizers on GAC. However, the results also revealed that backwashing could have a negative impact on the ammonium removal potential of GAC during prechlorination.


Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 2336-2342 ◽  
Author(s):  
Di Zhang ◽  
Qi Luo ◽  
Bin Gao ◽  
Sheau-Yun Dora Chiang ◽  
David Woodward ◽  
...  

2007 ◽  
Vol 7 (4) ◽  
pp. 17-23 ◽  
Author(s):  
S.G.J. Heijman ◽  
A.R.D. Verliefde ◽  
E.R. Cornelissen ◽  
G. Amy ◽  
J.C. van Dijk

The influence of natural organic matter (NOM) fouling on the rejection of micro pollutants in nanofiltration (NF) and the adsorption during granular activated carbon (GAC) filtration is investigated for a diverse group of pharmaceuticals. These pharmaceuticals were first spiked in feed waters filtered through a virgin NF-membrane and a corresponding NOM fouled membrane. The differences in rejection were never larger than 5%. The rejection of the negatively charged molecules on the fouled membrane slightly decreased and the rejection of the positively charged molecules slightly increased. These trends can be explained by a decrease of the repulsion of negative compounds and a decrease of the attraction of positive compounds by the fouled membrane. The sequential combination of NF and GAC was very effective in removing all types of pharmaceuticals. Compounds not well rejected by nanofiltration were more readily adsorbed by the GAC.


2018 ◽  
Vol 230 (1) ◽  
Author(s):  
George A. Grant ◽  
Paul R. Fisher ◽  
James E. Barrett ◽  
Patrick C. Wilson

Sign in / Sign up

Export Citation Format

Share Document