Bacillus subtilis rhizobacteria ameliorate heat stress in the common bean

Rhizosphere ◽  
2022 ◽  
pp. 100472
Author(s):  
Bruna Coelho de Lima ◽  
Aurenivia Bonifacio ◽  
Francisco de Alcantara Neto ◽  
Fabio Fernando de Araujo ◽  
Ademir Sergio Ferreira Araujo
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samira Mafi Moghaddam ◽  
Atena Oladzad ◽  
Chushin Koh ◽  
Larissa Ramsay ◽  
John P. Hart ◽  
...  

AbstractTepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evdoxia Efstathiadou ◽  
Georgia Ntatsi ◽  
Dimitrios Savvas ◽  
Anastasia P. Tampakaki

AbstractPhaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.


2010 ◽  
Vol 28 (1) ◽  
pp. 57-71 ◽  
Author(s):  
George S. Mahuku ◽  
María Antonia Henríquez ◽  
Carmenza Montoya ◽  
Carlos Jara ◽  
Henry Teran ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Sha Jiang ◽  
Fei-Fei Yan ◽  
Jia-Ying Hu ◽  
Ahmed Mohammed ◽  
Heng-Wei Cheng

The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.


2010 ◽  
Vol 10 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Alisson Fernando Chiorato ◽  
Sérgio Augusto Morais Carbonell ◽  
Roland Vencovsky ◽  
Nelson da Silva Fonseca Júnior ◽  
José Baldin Pinheiro

The goal of the present work was to evaluate the genetic gain obtained in grain yield for the common bean genotypes from 1989 until 2007, at the Instituto Agronômico de Campinas, in the state of São Paulo. Genetic gain has been separated into two research periods; the first, from 1989 to 1996, and the second, from 1997 to 2007. In the first period, a genetic gain of 1.07 % per year was obtained, whereas for the second period, the gain was zero. However, the mean yield of the evaluated lines was approximately 1000 kg ha-1 superior to the figures obtained in the first period. The main cause for the absence of genetic gain in the second period is that the focus of the breeding program was changed to grain quality. The individualized analysis of the genotypes with carioca grains in the second period indicated the lack of genetic gain during the investigated period.


2003 ◽  
Vol 49 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Elizabete HELBIG ◽  
Admar Costa de OLIVEIRA ◽  
Keila da Silva QUEIROZ ◽  
Soely Maria Pissini Machado REIS

Sign in / Sign up

Export Citation Format

Share Document