Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone

2019 ◽  
Vol 232 ◽  
pp. 111340 ◽  
Author(s):  
Gabriel Antunes Daldegan ◽  
Dar A. Roberts ◽  
Fernanda de Figueiredo Ribeiro
2021 ◽  
Vol 13 (24) ◽  
pp. 5134
Author(s):  
Junzhi Ye ◽  
Yunfeng Hu ◽  
Lin Zhen ◽  
Hao Wang ◽  
Yuxin Zhang

Large-scale, long time-series, and high-precision land-use mapping is the basis for assessing the evolution and sustainability of ecosystems in Xilingol, the Inner Mongolia Autonomous Region, China. Based on Google Earth Engine (GEE) and Landsat satellite remote-sensing images, the random forest (RF) classification algorithm was applied to create a yearly land-use/land-cover change (LULC) dataset in Xilingol during the past 20 years (2000–2020) and to examine the spatiotemporal characteristics, dynamic changes, and driving mechanisms of LULC using principal component analysis and multiple linear stepwise regression methods. The main findings are summarized as follows. (1) The RF classification algorithm supported by the GEE platform enables fast and accurate acquisition of the LULC dataset, and the overall accuracy is 0.88 ± 0.01. (2) The ecological condition across Xilingol has improved significantly in the last 20 years (2000–2020), and the area of vegetation (grassland and woodland) has increased. Specifically, the area of high-coverage grass and woodland increases (+13.26%, +1.19%), while the area of water and moderate- and low-coverage grass decreases (−15.96%, −7.23%, and −3.27%). Cropland increases first and then decreases (−34.85%) and is mainly distributed in the southeast. The area of deserted land decreases in the south and increases in the center and north, but the total area still decreases (−13.74%). The built-up land expands rapidly (+108.45%). (3) In addition, our results suggest that regional socioeconomic development factors are the primary causes of changes in built-up land, and climate-related factors are the primary causes of water changes, but the correlations between other land-use types and relevant factors are not significant (cropland and grassland). We conclude that the GEE+RF method is capable of automated, long time-series, and high-accuracy land-use mapping, and further changes in climatic, environmental, and socioeconomic development factors, i.e., climate warming and rotational grazing, might have significant implications on regional land surface morphology and landscape dynamics.


2021 ◽  
Vol 14 (1) ◽  
pp. 1 ◽  
Author(s):  
Dong Chen ◽  
Yafei Wang ◽  
Zhenyu Shen ◽  
Jinfeng Liao ◽  
Jiezhi Chen ◽  
...  

Human activities along with climate change have unsustainably changed the land use in coastal zones. This has increased demands and challenges in mapping and change detection of coastal zone land use over long-term periods. Taking the Bohai rim coastal area of China as an example, in this study we proposed a method for the long time-series mapping and change detection of coastal zone land use based on Google Earth Engine (GEE) and multi-source data fusion. To fully consider the characteristics of the coastal zone, we established a land-use function classification system, consisting of cropland, coastal aquaculture ponds (saltern), urban land, rural settlement, other construction lands, forest, grassland, seawater, inland fresh-waters, tidal flats, and unused land. We then applied the random forest algorithm, the optimal classification method using spatial morphology and temporal change logic to map the long-term annual time series and detect changes in the Bohai rim coastal area from 1987 to 2020. Validation shows an overall acceptable average accuracy of 82.30% (76.70–85.60%). Results show that cropland in this region decreased sharply from 1987 (53.97%) to 2020 (37.41%). The lost cropland was mainly transformed into rural settlements, cities, and construction land (port infrastructure). We observed a continuous increase in the reclamation with a stable increase at the beginning followed by a rapid increase from 2003 and a stable intermediate level increase from 2013. We also observed a significant increase in coastal aquaculture ponds (saltern) starting from 1995. Through this case study, we demonstrated the strength of the proposed methods for long time-series mapping and change detection for coastal zones, and these methods support the sustainable monitoring and management of the coastal zone.


2011 ◽  
Vol 115 (5) ◽  
pp. 1115-1128 ◽  
Author(s):  
Kara N. Youngentob ◽  
Dar A. Roberts ◽  
Alex A. Held ◽  
Philip E. Dennison ◽  
Xiuping Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document