Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions

2015 ◽  
Vol 52 ◽  
pp. 357-365 ◽  
Author(s):  
Mustafa E. Başoğlu ◽  
Abdulvehhap Kazdaloğlu ◽  
Tarık Erfidan ◽  
Mehmet Z. Bilgin ◽  
Bekir Çakır
2019 ◽  
Vol 52 (9-10) ◽  
pp. 1308-1318
Author(s):  
Sudipta Basu Pal ◽  
Abhijit Das ◽  
Konika Das (Bhattacharya) ◽  
Dipankar Mukherjee

The photovoltaic module testing apparatus being used presently for photovoltaic measurements acts principally on the method of photovoltaic module loading with resistive, capacitive, and electronic elements. In this work, a new method is described using a supercapacitor as the load to the photovoltaic module. This technique of characterization has proved to generate reliable V–I characteristics as validated by statistical and mathematical analyses in this article. Heat dissipation affecting the functioning of the photovoltaic modules is a common occurrence with resistive and capacitive loading techniques. It is reduced significantly in this method using supercapacitors, and curve tracing time is extremely modest and easily controllable. In effect, a low-cost, portable, and reliable I–V plotter is developed, which is operational from an embedded systems platform integrated with smart sensors. This I–V tracer has been used for the performance assessment of solar modules ranging from 10 to 100 Wp under varying climatic conditions in the eastern region of India. This test kit so developed in the photovoltaic engineering laboratory at Indian Institute of Engineering Science and Technology, Shibpur, is estimated to be useful for practicing engineers and photovoltaic scientists and in particular for photovoltaic module manufacturers. The performance parameters such as fill factor and performance ratio of photovoltaic modules measured by the device have been found to have almost identical values as the measurements from a reference commercial testing apparatus. The data pertaining to peak wattage as measured by the designed plotter have been found to be closely converging with an industry-friendly YOKOGAWA Power Meter (WT 330). Such peak values of power as measured and claimed by the datasheets will help reduce the uncertainties in measurement, leading to increased confidence of photovoltaic module manufacturers and investors. With this backdrop, the necessary work for scaling up of the low-cost I–V plotter has been taken up for assessing the performance of higher wattage photovoltaic modules.


Author(s):  
Fatou Ndiaye ◽  
Moustapha Sene ◽  
Modou Beye ◽  
Amadou S.H. Maiga

The main purpose of this paper is to evaluate the efficiency of a photovoltaic module operating in a sahelian country like Niger. A brief introduction to the behavior and the functioning of a photovoltaic module has been presented and the basic equations needed for a modeling based on ambient parameters have been also written. For the validation, characteristics of experimental purpose are presented with a satisfactory reliability degree. The effects of external parameters, mainly temperature, solar irradiance and wind speed have been considered on the output current characteristic and the output power characteristic. Due to their critical effects on the operation of the panel, effects of series resistances were also studied.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Mahmood Abdel hadi ◽  
Yasser Aldali ◽  
Ali N Celik

The main objective of the present paper is to compare nine different cell temperature models available in the literature with data measured under real Derna city climatic conditions (a semi arid climate) for month of August. The study focuses on a comparison of nine theoretical models to calculate the cell temperature based on the experimental measurements such as the ambient temperature, irradiance, and wind speed in some of the models. The presently used models are explicit, depending on the easily measurable parameters and of wide applicability. Six statistical quantitative indicators are used to evaluate the cell temperature models analysed, namely, R2, RMSE, RRMSE, MAE, MBE and MARE. The cell temperature correlations presently studied, first order linear models depending on the ambient temperature, solar irradiation incident on the panel and voltage output, provide the most accurate cell temperature estimations at Derna city climatic conditions.


JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 64
Author(s):  
DONNY RADIANTO ◽  
HERWANDI HERWANDI ◽  
YULIANTO YULIANTO

Sistem pembangkit listrik saat ini telah menarik banyak perhatian baik dari kalangan akademik maupun industri. Hal ini disebabkan karena keuntungan yang ditawarkan, antara lain bersih, dapat merubah menjadi listrik secara langsung, dan tidak menyebabkan polusi. Namun, karena masih adanya ketergantungan terhadap kondisi iklim, demikian seperti irradiant maupun suhu, maka daya dari modul photovoltaik ini perlu dimaksimalkan. Terkait dengan hal ini, paper ini menghadirkan suatu metode untuk melacak daya maksimum dari modul photovoltaik berbasis pada metode perturbation observer yang dimodifikasi. Metode pelacakan ini dibuat untuk menghasilkan modulasi lebar pulsa dengan frekuensi 62.5 KHz yang berfungsi untuk mengatur konverter berbasis SEPIC dengan menerima tegangan masukan dari modul PV serta menghasilkan tegangan keluaran yang dapat digunakan untuk mengisi baterai (accu) yang dapat diintegrasikan untuk menghasilkan tegangan AC melalui inverter. Penggunaan SEPIC sebagai pengkondisi sinyal ini karena memiliki keuntungan dimana tegangan keluaran yang dihasilkan tidak dibalik, seperti pada rangkaian konverter buck – boost. Selanjutnya, pemanfaatan metode perturbation observer yang telah dimodifikasi dan diintegrasikan dengan konverter SEPIC menunjukkan kinerja yang memuaskan. Selain itu, sistem yang diajukan hanya memanfaatkan sensor tunggal sebagai masukan dari kontroller. The current power generation system has attracted a lot of attention from both academia and industry. This is due to the advantages offered, including being clean, being able to convert into electricity directly, and not causing pollution. However, because there is still dependence on climatic conditions, such as irradiant and temperature, the power from this photovoltaic module needs to be maximized. Related to this, this paper presents a method to track the maximum power of a photovoltaic module based on a modified perturbation observer method. This tracking method is made to produce pulse width modulation with a frequency of 62.5 KHz which functions to regulate the SEPIC-based converter by receiving input voltage from the PV module and producing an output voltage that can be used to charge the battery (accu) which can be integrated to produce AC voltage through the inverter. The use of SEPIC as a signal conditioner has the advantage that the resulting output voltage is not reversed, as in the buck-boost converter circuit. Furthermore, the use of the modified perturbation observer method integrated with the SEPIC converter showed satisfactory performance. In addition, the proposed system only utilizes a single sensor as input from the controller


Author(s):  
Farid Saadaoui ◽  
Khaled Mammar ◽  
Abdaldjabar Hazzab

<p>This paper presented the study, development and implementation of the maximum power point of a photovoltaic energy generator adapted by elevator converter and controlled by a maximum power point command. In order to improve photovoltaic system performance and to force the photovoltaic generator to operate at its maximum power point, the idea of the context of this paper deals with the exploitation of the technique of the artificial intelligence mechanism (neural network) certainly based on the three parts of the photovoltaic system (photovoltaic  module inputs (temperature and  solar radiation), photovoltaic module and control (MPPT)) that have been adopted within a simulation time of 24 hours.</p><p>In addition, to reach the optimal operating point regardless of variations in climatic conditions, the use of a neuron network based disturbance and observation algorithm (P&amp;O) is put into service of the system given its reliability, its simplicity and view that at any time it can follow the desired maximum power.</p><p>The entire system is implemented in the Matlab / Simulink environment where simulation results  obtained are very promising and have shown the effectiveness and speed of neural technology that still require a learning base so to improve the performance of photovoltaic systems and exploit them in energy production, as well as this technique has proved that these results are much better in terms (of its very great precision and speed of computation) than those of the controller based on the conventional MPPT method P&amp;O.</p>


2019 ◽  
Vol 22 (4) ◽  
pp. 122-127 ◽  
Author(s):  
Matúš Bilčík ◽  
Monika Božiková ◽  
Martin Malínek

Abstract The article deals with the impact of selected external factors on the temperature of photovoltaic module surfaces. Primary aim of this research is creation of temperature model for photovoltaic module, which would be usable under the real climatic conditions in Central Europe region. Fully autonomous measuring system was designed and created for temperature monitoring of different parts of photovoltaic modules. The measuring system consists of 24 temperature sensors, voltage inverter, control unit, transfer modules, receiver modules and temperature measuring module. The experiments were performed on photovoltaic modules installed on the roof of the University of Life Sciences in Prague during summer 2018. The temperature of photovoltaic modules significantly depends on the climatic conditions, which were monitored by the weather station. The temperature and the solar radiation dependencies for polycrystalline and monocrystalline photovoltaic modules were obtained in experiments conducted. The temperature relations were measured for different parts of photovoltaic module – active parts of photovoltaic module, frame, non-active parts of photovoltaic module, as well as ambient temperature. Final mathematical description of polynomial graphical dependencies was obtained after application of fitting procedure and regression analysis.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 516 ◽  
Author(s):  
Mustafa Atmaca ◽  
İmdat Zafer Pektemir

The temperature of a PV (photovoltaic) panel increases when it produces electricity but its electrical efficiency decreases when the temperature increases. In addition, the electrical efficiency of the PV panel is very limited. To increase the PV efficiency, the rest of the solar irradiance must be used, together with the temperature being kept at an optimum value. With this purpose, an experimental study was conducted. Firstly, two specific photovoltaic-thermal (PV/T) systems were designed. The first was the PV/T system which used only a water heat exchanger. The other one was the PV/T system that used a water and air heat exchanger. In the latter PV/T system, air passed through both the top of the PV panel and the bottom of it while water passed through only the bottom of the panel in a separate heat exchanger. In this way, the water and air absorbed the thermal energy of the panel by means of separate heat exchangers, simultaneously. In addition to the two systems mentioned above, an uncooled photovoltaic module was also designed in order to compare the systems. As a result, three different modules were designed. This study was conducted in a natural ambient environment and on days which had different climatic conditions. The thermal, electrical and overall efficiencies of each PV/T module were determined. The results were compared with the uncooled module electrical efficiency. The results showed that when water and air were used together, it was more efficient than single usage in a PV/T system. The thermal gain of the working fluids was also found to be fairly high and so, the gained energy could be used for different purposes. For example, hot air could be used in drying systems and air condition systems. Hot water could be used in hot water supply systems.


Sign in / Sign up

Export Citation Format

Share Document