scholarly journals Validation of Thermal Models for Polycrystalline Photovoltaic Module Under Derna City Climate Conditions

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Mahmood Abdel hadi ◽  
Yasser Aldali ◽  
Ali N Celik

The main objective of the present paper is to compare nine different cell temperature models available in the literature with data measured under real Derna city climatic conditions (a semi arid climate) for month of August. The study focuses on a comparison of nine theoretical models to calculate the cell temperature based on the experimental measurements such as the ambient temperature, irradiance, and wind speed in some of the models. The presently used models are explicit, depending on the easily measurable parameters and of wide applicability. Six statistical quantitative indicators are used to evaluate the cell temperature models analysed, namely, R2, RMSE, RRMSE, MAE, MBE and MARE. The cell temperature correlations presently studied, first order linear models depending on the ambient temperature, solar irradiation incident on the panel and voltage output, provide the most accurate cell temperature estimations at Derna city climatic conditions.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3377-3390
Author(s):  
Şemsettin Doruk

Glue shear strength and wood preservatives play an important role in the longevity of engineered wood products. The effects of factors such as UV rays, humidity, and temperature on wooden materials are known. However, it is not known what effects sub-zero temperatures have on wood material and how wood preservatives play a role. This study determined the effects of synthetic-based varnish and impregnation on shear strength in cold climatic conditions. Variables including glue type, ambient temperature, tree type, and process type were investigated. Wood laminate test samples were produced for this purpose, and water repellent impregnation material and synthetic-based varnish were used as wood preservatives. Experimental samples were kept in a cold air cabinet at (-15 °C) and (-30 °C) temperature for 90 days. Samples kept in different temperature conditions were subjected to a pull experiment in a parallel (//) direction to the fibers under static load. As the ambient temperature decreased, the shear strength decreased (-15 °C: 8,960 N/mm2 ,-30 °C: 8,025 N/mm2 ) . When the performance of wood preservation elements were examined, it was determined that the varnish process (8,875 N/mm2) and the impregnation process (8,691 N/mm2) were not statistically significant, at 12% and 10%, respectively.


2019 ◽  
Vol 25 (10) ◽  
pp. 1-19
Author(s):  
Mena Safaa Mohammed ◽  
Emad Talib Hashim

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were: Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1


2020 ◽  
Vol 57 (6) ◽  
pp. 65-74
Author(s):  
A. Dekhane ◽  
B. Lamri ◽  
N. Benamira

AbstractAlgeria, like any other country, has drawn up its roadmap for the use and promotion of renewable energy sources. Motivated by its commitment to the international community in the fight against global warming and its possession of one of the largest solar fields in the world, a series of laws and institutions have consolidated this ambitious schedule. As known, both the climate and the geological area of Algeria take place among the foremost favoured countries in the field of solar energy. The present paper aims at proposing a simple model of photovoltaic module.The authors used Matlab/Simulink software to predict the current-voltage and power-voltage characteristics according to the influence of several factors, such as solar irradiance, cell temperature and series resistance, on the efficiency of photovoltaic module. The proposed experimental investigation can easily predict the curves (current-voltage and power-voltage) of a PV module, where both of simulation and practical results are identical. A single-crystal-line photovoltaic module was introduced close to Badji-Mokhtar Annaba University, Annaba (Algeria) to show the impact of climatic conditions in this coastal region and partial shading on characteristics.


2018 ◽  
Vol 225 ◽  
pp. 04018
Author(s):  
M.R.R. Chand ◽  
Firdaus Basrawi ◽  
Azizuddin Abd Aziz ◽  
Zafri Azran ◽  
Shaharin Anwar Sulaiman ◽  
...  

This research work is intended to evaluate the reliability of commonly utilized empirical correlations of module operation temperature in estimating the photovoltaic performances in tropical region. The Nominal Operation Cell Temperature (NOCT) model, Tropical Field Operation Cell Temperature (tFOCT) model and the experimental back module temperature were selected for evaluation purposes. The models were evaluated by comparing the performance characteristics of a 250W monocrystalline photovoltaic module installed at University Malaysia Pahang. The monocrystalline back module temperature and power output as well as the environmental data including both solar irradiation and ambient temperature were monitored to assist the analysis. Based on the 5 consecutive day experimental data, results indicated that the module operation temperature estimated by tFOCT model had the closest value to the experimental back module temperature. Whereas, the temperature estimated by NOCT model showed the highest deviation up to 25.8% from the experimental back module temperature. However, in terms of estimating the photovoltaic module power output, the NOCT model had the closest value to the experimentally measured power output. The results also indicated that utilizing the back module temperature often mislead the estimation of photovoltaic module power output. In addition, the deviation of estimated power output from NOCT model, tFOCT model and back module operation temperature as compared to the experimental power output were 15.4%, 18.87% and 21.2%, respectively. Thus, the NOCT model demonstrated better estimation of power output as compared to the experimental result than tFOCT model, and back module temperature. However, better estimation method for tropical regions is still needed because three methods evaluated in this study shows deviation of more than 15.4% from the measured power output.


2017 ◽  
Vol 13 (3) ◽  
pp. 74-82
Author(s):  
Mohammed E. Abd Al-Wahed ◽  
Osamah F. Abdullateef

Abstract   The environmental conditions are important factors, because they affect both the efficiency of a photovoltaic module and the energy load. This research was carried out experimentally and modeling was done in MATLAB –Simulink by monitoring the variation in power output of the system with environmental conditions such as solar radiation, ambient temperature, wind speed, and humidity of Baghdad city. From the results, the ambient temperatures are inversely proportional to humidity and the output power performance of the system, while the wind speed is directly proportional with the output power performance of the system.     Keywords: Ambient temperature, cell temperature, humidity, Photovoltaic, solar radiation, wind speed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7064
Author(s):  
Dang Phuc Nguyen Nguyen ◽  
Kristiaan Neyts ◽  
Johan Lauwaert

The operating temperature is an essential parameter determining the performance of a photovoltaic (PV) module. Moreover, the estimation of the temperature in the absence of measurements is very complex, especially for outdoor conditions. Fortunately, several models with and without wind speed have been proposed to predict the outdoor operating temperature of a PV module. However, a problem for these models is that their accuracy decreases when the sampling interval is smaller due to the thermal inertia of the PV modules. In this paper, two models, one with wind speed and the other without wind speed, are proposed to improve the precision of estimating the operating temperature of outdoor PV modules. The innovative aspect of this study is two novel thermal models that consider the variation of solar irradiation over time and the thermal inertia of the PV module. The calculation is applied to different types of PV modules, including crystalline silicon, thin film as well as tandem technology at different locations. The models are compared to models that are described in the literature. The results obtained in different time steps show that our proposed models achieve better performance and can be applied to different PV technologies.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


2019 ◽  
Vol 49 (4) ◽  
pp. 101-105 ◽  
Author(s):  
G. M. Shkyratova ◽  
B. Z. Bazaron ◽  
T. N. Khamiruev ◽  
S. M. Dashinimaev

The seasonal changes in the skin thickness and structure of the horses’ coat, as signs of adaptation to environmental factors, were studied. The experiment was carried out with the livestock kept in a herd using winter-grazing technology without additional feedings in the climatic conditions of the Trans-Baikal Territory. The objects of the research were adult mares of Zabaikalsky breed of horses of the same age, class and fatness. The studies were carried out in the middle of each season (May, July, October, February). The length of the coat was measured with a caliper, the coat itself with the determination of the ratio of hair (fl uffy hair, heterotype hair and coarse hair) and the thickness of the skin fold were measured in accordance with the approved methodological recommendations. The minimum skin thickness in winter was detected in mares on the back and shoulder blade – 4.3 and 4.4 mm, the maximum – on the side and thigh – 4.5 4.6 mm. When compared with the summer period, the increase on the side was 0.8 mm, whereas on the back, shoulder blade and thigh – 0.4 mm (p ≤ 0,001). In spring, thickening of the skin was noted within 0.1-0.3 mm in the same topographic areas, compared to autumn. The quantitative indicators of the coat changed depending on the season of the year. In winter, the coat contained more fl uffy hair (23.10%), and less coarse hair (68.24%), in summer there was a lower content of fl uffy hair (4.33%), but more coarse hair (94.01%.) Sharp seasonal changes were noted with regard to the length of the hair. The longest hair was found in winter and spring – 4.96 and 4.26 cm, whereas the shortest – in summer and autumn – 0.94 and 1.90 cm, respectively.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3030
Author(s):  
Simon Liebermann ◽  
Jung-Sup Um ◽  
YoungSeok Hwang ◽  
Stephan Schlüter

Due to the globally increasing share of renewable energy sources like wind and solar power, precise forecasts for weather data are becoming more and more important. To compute such forecasts numerous authors apply neural networks (NN), whereby models became ever more complex recently. Using solar irradiation as an example, we verify if this additional complexity is required in terms of forecasting precision. Different NN models, namely the long-short term (LSTM) neural network, a convolutional neural network (CNN), and combinations of both are benchmarked against each other. The naive forecast is included as a baseline. Various locations across Europe are tested to analyze the models’ performance under different climate conditions. Forecasts up to 24 h in advance are generated and compared using different goodness of fit (GoF) measures. Besides, errors are analyzed in the time domain. As expected, the error of all models increases with rising forecasting horizon. Over all test stations it shows that combining an LSTM network with a CNN yields the best performance. However, regarding the chosen GoF measures, differences to the alternative approaches are fairly small. The hybrid model’s advantage lies not in the improved GoF but in its versatility: contrary to an LSTM or a CNN, it produces good results under all tested weather conditions.


Sign in / Sign up

Export Citation Format

Share Document