Effect of high proportion concentrate dietary on Ashdan Yak jejunal barrier and microbial function in cold season

2021 ◽  
Vol 140 ◽  
pp. 259-267
Author(s):  
Jianlei Jia ◽  
Chunnian Liang ◽  
Xiaoyun Wu ◽  
Lin Xiong ◽  
Pengjia Bao ◽  
...  
2021 ◽  
Author(s):  
Jia Jianlei ◽  
Zhang Liping ◽  
Guo Wujun ◽  
Hou Guangtian ◽  
Wu Jianping ◽  
...  

Abstract Bodyweight loss and rumen microbial dysfunction of grazing sheep was a challenge for the sheep production industry during cold season, which were considered to correlated with under-roughage-feeding. The objective of our research was to assess the role of Alfalfa hay supplementary intake in roughage in ewes’ rumen fermentation and microbial function. 120 ewes were allocated randomly into 4 groups, and were fed with different level of alfalfa hay, respectively. Individual ewes’ bodyweight, blood biochemical indexes and rumen microbial characteristics were analyzed after the end of feeding trials. The results showed that alfalfa hay supplementary could significantly enhance sheep body weight, nitrogen components (Total-N, Soluble protein-N and Ammonia-N), blood biochemical indices (LDH, BUN and CHO) and ruminal volatile fatty acids (P < 0.05). Meantime, alfalfa hay supplementary increased the richness and diversity of ruminal fluid microbiota, and decreased ruminal fluid microbiota beta-diversity. The ruminal fluid microbiota of alfalfa hay supplementary feeding showed low immune pathway and high carbohydrate metabolism pathway. Overall, the study suggested that there was an increasing tendency of alfalfa-hay-supplementary group in 30% Yellow Maize Silage + 70% Alfalfa Hay roughage in body weight, ruminal fermentation and microbial function, which improved GS performance through developing hay supplementary system during cold season.


Author(s):  
Minjeong Cho ◽  
Yong-Sang Choi ◽  
Ha-Rim Kim ◽  
Changhyun Yoo ◽  
Seoung-Soo Lee

2021 ◽  
Vol 13 (12) ◽  
pp. 6875
Author(s):  
Irene Poza-Casado ◽  
Raquel Gil-Valverde ◽  
Alberto Meiss ◽  
Miguel Ángel Padilla-Marcos

Indoor air quality (IAQ) in educational buildings is a key element of the students’ well-being and academic performance. Window-opening behavior and air infiltration, generally used as the sole ventilation sources in existing educational buildings, often lead to unhealthy levels of indoor pollutants and energy waste. This paper evaluates the conditions of natural ventilation in classrooms in order to study how climate conditions affect energy waste. For that purpose, the impact of the air infiltration both on the IAQ and on the efficiency of the ventilation was evaluated in two university classrooms with natural ventilation in the Continental area of Spain. The research methodology was based on site sensors to analyze IAQ parameters such as CO2, Total Volatile Organic Compounds (TVOC), Particulate Matter (PM), and other climate parameters for a week during the cold season. Airtightness was then assessed within the classrooms and the close built environment by means of pressurization tests, and infiltration rates were estimated. The obtained results were used to set up a Computational Fluid Dynamics (CFD) model to evaluate the age of the local air and the ventilation efficiency value. The results revealed that ventilation cannot rely only on air infiltration, and, therefore, specific controlled ventilation strategies should be implemented to improve IAQ and to avoid excessive energy loss.


2021 ◽  
Vol 13 (10) ◽  
pp. 1884
Author(s):  
Jingjing Hu ◽  
Yansong Bao ◽  
Jian Liu ◽  
Hui Liu ◽  
George P. Petropoulos ◽  
...  

The acquisition of real-time temperature and relative humidity (RH) profiles in the Arctic is of great significance for the study of the Arctic’s climate and Arctic scientific research. However, the operational algorithm of Fengyun-3D only takes into account areas within 60°N, the innovation of this work is that a new technique based on Neural Network (NN) algorithm was proposed, which can retrieve these parameters in real time from the Fengyun-3D Hyperspectral Infrared Radiation Atmospheric Sounding (HIRAS) observations in the Arctic region. Considering the difficulty of obtaining a large amount of actual observation (such as radiosonde) in the Arctic region, collocated ERA5 data from European Centre for Medium-Range Weather Forecasts (ECMWF) and HIRAS observations were used to train the neural networks (NNs). Brightness temperature and training targets were classified using two variables: season (warm season and cold season) and surface type (ocean and land). NNs-based retrievals were compared with ERA5 data and radiosonde observations (RAOBs) independent of the NN training sets. Results showed that (1) the NNs retrievals accuracy is generally higher on warm season and ocean; (2) the root-mean-square error (RMSE) of retrieved profiles is generally slightly higher in the RAOB comparisons than in the ERA5 comparisons, but the variation trend of errors with height is consistent; (3) the retrieved profiles by the NN method are closer to ERA5, comparing with the AIRS products. All the results demonstrated the potential value in time and space of NN algorithm in retrieving temperature and relative humidity profiles of the Arctic region from HIRAS observations under clear-sky conditions. As such, the proposed NN algorithm provides a valuable pathway for retrieving reliably temperature and RH profiles from HIRAS observations in the Arctic region, providing information of practical value in a wide spectrum of practical applications and research investigations alike.All in all, our work has important implications in broadening Fengyun-3D’s operational implementation range from within 60°N to the Arctic region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Seok-Woo Son ◽  
Woosok Moon ◽  
Jong-Seong Kug ◽  
Jaeyoung Hwang

AbstractThe subseasonal relationship between Arctic and Eurasian surface air temperature (SAT) is re-examined using reanalysis data. Consistent with previous studies, a significant negative correlation is observed in cold season from November to February, but with a local minimum in late December. This relationship is dominated not only by the warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) pattern. The budget analyses reveal that both WACE and CAWE patterns are primarily driven by the temperature advection associated with sea level pressure anomaly over the Ural region, partly cancelled by the diabatic heating. It is further found that, although the anticyclonic anomaly of WACE pattern mostly represents the Ural blocking, about 20% of WACE cases are associated with non-blocking high pressure systems. This result indicates that the Ural blocking is not a necessary condition for the WACE pattern, highlighting the importance of transient weather systems in the subseasonal Arctic-Eurasian SAT co-variability.


2021 ◽  
Vol 1 ◽  
pp. 1123-1132
Author(s):  
Tatsuya Oda ◽  
Shigeru Wesugi

AbstractDuring the cold season, the cold protective products are often short during evacuation life after a natural disaster. If evacuees can make and wear simple cold protective gears by using materials obtainable on site, it will reduce the burden on the evacuees in emergent situation. Therefore, we investigated the structure constructed by folding newsprint paper, which can improve the heat retention effect and be applied to various body shapes. Focusing on the glide reflection structure repeating a smaller chamber, the basic size was determined by experiments with reference to the accordion shape, and the experimental results indicated that the heat retention effect was significantly greater than that of a mere air layer and those of ordinary fabrics. Next, it was found that the apex angle of structure had no significant difference in the heat retention effect. Then, the dimensions of the structure were determined to maintain the air layer under the pressure of the clothes by simulation of structural analyses. Finally, we made a temporary cold protective gear that can practically cover the trunk of the body and found that the heat retention effect was significantly higher than that of unprocessed newsprint and that of accordion shape.


Sign in / Sign up

Export Citation Format

Share Document