Advanced approaches for the treatment and amplification of weak spectral signals produced by critical concentrations in white multicomponent systems

Author(s):  
Hayam M. Lotfy ◽  
Sarah S. Saleh ◽  
Christine M. El-Maraghy
Author(s):  
Dennis Maher ◽  
David Joy ◽  
Peggy Mochel

A variety of standard specimens is needed in order to systematically investigate the instrumentation, specimen, data reduction and quantitation variables in electron energy-loss spectroscopy (EELS). Pure single element specimens (e.g. various forms of carbon) have received considerable attention to date but certain elements of interest cannot be prepared directly as thin films. Since studies of the first and second row elements in two- or multicomponent systems will be of considerable importance in microanalysis using EELS, there is a need for convenient standards containing these species. For many investigations a standard should contain the desired element, or elements, homogeneously dispersed through a suitable matrix and at an accurately known concentration. These conditions may be met by the technique of implantation.Silicon was chosen as the host lattice since its principal ionization energies, EL23 = 98 eV and Ek = 1843 eV, are well removed from the K-edges of most elements of major interest such as boron (Ek = 188 eV), carbon (Ek = 283 eV), nitrogen (Ek = 400 eV) and oxygen (Ek = 532 eV).


2017 ◽  
Author(s):  
Christoph Engwer ◽  
Ronja Loy ◽  
Ioannis S. Chronakis ◽  
Ana C. Mendes ◽  
Francisco M. Goycoolea

Genipin is increasingly used as a crosslinking agent for chitosans due to its low cytotoxicity as a naturally occurring extract of the plant <i>Gardenia jasminoides</i>. Genipin reacts with the primary amino groups of chitosan to form blue hydrogels. We studied the gelation kinetics of different chitosans varying in their properties (molar mass 34 000-213 000 g mol<sup>-1</sup>, degree of acetylation 9-20%) and genipin in detail. We found that critical sol-gel transition times obtained from dynamic light scattering were in good agreement with the results obtained by small deformation oscillatory rheometry and microviscosimetry at high concentrations of chitosan. However, at below critical concentrations, we found a second regime of gelation that followed the same Ross-Murphy's gelation kinetics. The macroscopic appearance of these samples was a suspension of weak gel-like particles that were sensitive to mechanical forces. We believe that the material is a mesoscopic gel, as described for other polymers. To the best of our knowledge, this is the first time that this phenomenon has been described for the gelling system of chitosan and genipin.


1978 ◽  
Vol 43 (9) ◽  
pp. 2387-2394 ◽  
Author(s):  
Libor Červený ◽  
Dana Plecháčová ◽  
Vlastimil Růžička

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 475
Author(s):  
Guijin Liu ◽  
Junjian Li ◽  
Shiming Deng

Solid multicomponent systems (SMS) are gaining an increasingly important role in the pharmaceutical industry, to improve the physicochemical properties of active pharmaceutical ingredients (APIs). In recent years, various processes have been employed for SMS manufacturing. Control of the particle solid-state properties, such as size, morphology, and crystal form is required to optimize the SMS formulation. By utilizing the unique and tunable properties of supercritical fluids, supercritical anti-solvent (SAS) process holds great promise for the manipulation of the solid-state properties of APIs. The SAS techniques have been developed from batch to continuous mode. Their applications in SMS preparation are summarized in this review. Many pharmaceutical co-crystals and solid dispersions have been successfully produced via the SAS process, where the solid-state properties of APIs can be well designed by controlling the operating parameters. The underlying mechanisms on the manipulation of solid-state properties are discussed, with the help of on-line monitoring and computational techniques. With continuous researching, SAS process will give a large contribution to the scalable and continuous manufacturing of desired SMS in the near future.


2020 ◽  
Vol 153 (11) ◽  
pp. 114302
Author(s):  
Diletta Meroni ◽  
Angelo Monguzzi ◽  
Francesco Meinardi

2016 ◽  
Vol 70 (12) ◽  
Author(s):  
Leonid Serafimov ◽  
Anastasia Frolkova

AbstractA method for the determination of vapor–liquid phase diagram structure of five-component systems based on the analysis of types and Poincare indexes of singular points of the geometric scan and full structure of the concentration simplex is proposed. Validity of the proposed method was demonstrated by vapor–liquid equilibrium modeling in five-component mixtures: ethanol + water + toluene + butanol + chlorbenzene and acetone + chloroform + ethanol + cyclohexane + water.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Farhoosh

AbstractEffect of hydroxytyrosol (HT) and tert-butylhydroquinone (TBHQ) on the kinetics of lipid hydroperoxides (LOOH) accumulation during the initiation and propagation peroxidations of canola and fish oils at 60 °C was studied. The initiation kinetics of the inhibited peroxidation indicated considerable relative activities, A, for HT and TBHQ in the canola (> 3200 and > 27,000, respectively) and fish (> 120 and > 5000, respectively) oils. The critical concentrations of LOOH reverse micelles (CMCL = 33 mM and 57 mM in the canola and fish, respectively, oils) significantly decreased, on average, to about one-third and 8% of the initial values for HT and TBHQ, respectively. Interestingly, the propagation kinetics of the inhibited peroxidation demonstrated that the antioxidants were still able to inhibit peroxidation, so that the relative propagation oxidizability parameter Rn′ was significantly improved to < 0.5 for HT and to < 0.2 for TBHQ in the canola and fish, respectively, oils.


Sign in / Sign up

Export Citation Format

Share Document