Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity, and production of green beans (Phaseolus vulgaris L.)

2021 ◽  
Vol 288 ◽  
pp. 110297
Author(s):  
Alejandro Palacio-Márquez ◽  
Carlos A. Ramírez-Estrada ◽  
Nayeli Jazmín Gutiérrez-Ruelas ◽  
Esteban Sánchez ◽  
Damaris L. Ojeda- Barrios ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 128 ◽  
Author(s):  
Cástor Ponce-García ◽  
Juan Soto-Parra ◽  
Esteban Sánchez ◽  
Ezequiel Muñoz-Márquez ◽  
Francisco Piña-Ramírez ◽  
...  

The introduction of nanofertilizers (Nfs) in agriculture has allowed the development of new technologies that enhance the productivity of crops. Within the most studied Nfs we find metal oxides, especially ZnO; however, the results of various experiments provide contradictory data on the growth variables. Therefore, this study intended to evaluate the efficiency associated with the use of nanoparticles, sulfates, and zinc-chelates in Phaseolus vulgaris L. cv. Strike grown in acid soil, as well as to evaluate its production, total biomass, and nitrogen assimilation. Phaseolus vulgaris L. cv. Strike plants were sprouted and grown in polyethylene bags containing 3 kg of acid soil (pH 6.8) in an experimental greenhouse and were watered with a nutritious solution. A completely randomized design including ten treatments and five repetitions was used. Treatments consisted of applying different zinc sources (sulfate, DTPA chelate, and zinc oxide nanoparticles) to four different doses (0, 25, 50, and 100 ppm of zinc). Results obtained indicated that the doses best favoring an increase in biomass, production, and nitrogen assimilation were 50 ppm of ZnSO4, 100 ppm of DTPA-Zn, and 25 ppm of zinc oxide nanofertilizers (NfsOZn). Hence, the dose containing 25 ppm of NfsOZn was the most efficient dose, since at a lower dose it was able to equalize biomass accumulation, production, and nitrogen assimilation as compared to ZnSO4 and DTPA-Zn sources. However, further research is required, given that high-concentration doses were toxic for beans. Finally, it is worth highlighting that zinc oxide nanoparticles have a huge potential to be used as nanofertilizers if applied in optimal concentrations.


2020 ◽  
Vol 12 (10) ◽  
pp. 1231-1235
Author(s):  
V. Sorna Gowri ◽  
Raj Kumar Sen ◽  
Sunil Kumar Sanghi ◽  
Avanish Kumar Srivastava

A series of novel Zinc Oxide (ZnO) copolymer composites films with different Zinc Oxide concentration were prepared through incorporation of pre-made Zinc Oxide particle in to copolymer epoxy poly(dimethyl acrylamide). The copolymer epoxy poly(dimethyl acrylamide) was synthesized by free radical polymerization to disperse the Zinc Oxide nanoparticles. The Zinc Oxide nanoparticles with the diameter of 19 nm–35 nm were synthesized from zinc nitrate via a wet chemical method. The aim of the work is to develop a new method/process/material for the dispersion of Zinc Oxide nanoparticles and testing the performance of these composites films. Thermo gravimetric analysis show that Zinc Oxide nanoparticles were successfully incorporated into the polymer matrix and the Zinc Oxide copolymer composites have a good thermal stability. The micro structural analysis also show newly synthesized polymer disperse the nanoparticles well as evidenced by Scanning Electron Microscopy (SEM) analysis. The uniformly dispersed Zinc Oxide nanoparticle in the polymer matrix and the particles almost remained in their original shape and size even after incorporation in the polymer matrix. Fourier transform infrared spectroscopy (FT-IR) shift of the copolymer adsorbed Zinc Oxide nanoparticles confirmed that polymer molecules chain was anchored on the surface of the nanoparticles.


2018 ◽  
Vol 231 ◽  
pp. 15-21 ◽  
Author(s):  
Antonio Minnocci ◽  
Alessandra Francini ◽  
Stefania Romeo ◽  
Alfredo Daniele Sgrignuoli ◽  
Giovanni Povero ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Liliana E. Romo ◽  
Hened Saade ◽  
Bertha Puente ◽  
Ma. Luisa López ◽  
Rebeca Betancourt ◽  
...  

Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl) sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt.) containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonalwurtzitecrystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.


2019 ◽  
Vol 18 ◽  
pp. 101083 ◽  
Author(s):  
Dina M. Salama ◽  
Samira A. Osman ◽  
M.E. Abd El-Aziz ◽  
Mohamed S.A. Abd Elwahed ◽  
E.A. Shaaban

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2074
Author(s):  
Razu Ahmed ◽  
Mohd Yusoff Abd Samad ◽  
Md. Kamal Uddin ◽  
Md. Abdul Quddus ◽  
M. A. Motalib Hossain

Growing vegetables can be seen as a means of improving people’s livelihoods and nutritional status. Tomatoes are one of the world’s most commonly planted vegetable crops. The nutritional arrangement of the tomato depends on the quantity and type of nutrients taken from the growing medium, such assoil and foliar application; therefore, an adequate amount of macro- and micro-nutrients, including zinc (Zn) and zinc oxide nanoparticles (ZnO-NPs), are crucial for tomato production. Zinc foliar spraying is one of the effective procedures that may improve crop quality and yield. Zinc oxide nanoparticles (ZnO-NPs) are represented as a biosafety concern for biological materials. Foliar application of Zn showed better results in increasing soluble solids(TSS), firmness, titratable acidity, chlorophyll-a, chlorophyll-b, ascorbic acid, amount of lycopene. Researchers have observed the effect of nanoparticles of zinc oxide on various crops, including tomatoes. Foliar spraying of ZnO-NPs gave the most influential results in terms of best planting parameters, namely plant height, early flowering, fruit yields as well as lycopene content. Therefore, more attention should be given to improving quantity and quality as well as nutrient use efficiency of Zn and ZnO-NPs in tomato production. Recent information on the effect of zinc nutrient foliar spraying and ZnO-NPs as a nano fertilizer on tomato productivity is reviewed in this article.


Sign in / Sign up

Export Citation Format

Share Document