scholarly journals Fertilizer N application rate impacts plant-soil feedback in a sanqi production system

2018 ◽  
Vol 633 ◽  
pp. 796-807 ◽  
Author(s):  
Wei Wei ◽  
Min Yang ◽  
Yixiang Liu ◽  
Huichuan Huang ◽  
Chen Ye ◽  
...  
1976 ◽  
Vol 86 (2) ◽  
pp. 335-342 ◽  
Author(s):  
R. Marsh ◽  
F. J. Gordon ◽  
J. C. Murdoch ◽  
W. E. G. Stevenson

SummaryThe effect of season of harvest and previous seasonal applications of fertilizer N on the response of perennial ryegrass/white clover swards to pre-cut applications of fertilizer N was studied in three consecutive years on different sites. Herbage D.M. yield responded in a curvilinear manner to increased pre-cut N application rates. There was a tendency in all experiments for the marginal response of herbage D.M. to increased pre-cut N application rates to decrease as previous seasonal fertilizer N application rates increased. Although the effect of season of harvest on the response of herbage D.M. to pre-cut N application rates varied with site/years, it was concluded that the marginal response of herbage D.M. to pre-cut N application rate varies little throughout the greater part of the growing season. The exceptions to this are the very early and late harvests and swards that receive low supplies of N from the sward/soil complex. The results are discussed in relation to other published data and to their possible use in the control of the seasonal pattern and total seasonal supply of herbage D.M. for rotational grazing management systems.


Nitrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 34-51
Author(s):  
Amitava Chatterjee

Nitrogen (N) losses from field crops have raised environmental concerns. This manuscript accompanies a database of N loss studies from non-legume field crops conducted across the conterminous United States. Cumulative N losses through nitrous oxide-denitrification (CN2O), ammonia volatilization (CNH3), and nitrate leaching (CNO3−) during the growing season and associated crop, soil, and water management information were gathered to determine the extent and controls of these losses. This database consisted of 404, 26, and 358 observations of CN2O, CNH3, and CNO3− losses, respectively, from sixty-two peer-reviewed manuscripts. Corn (Zea mays) dominated the N loss studies. Losses ranged between −0.04 to 16.9, 2.50 to 50.9, and 0 to 257 kg N ha−1 for CN2O, CNH3 and CNO3−, respectively. Most CN2O and CNO3− observations were reported from Colorado (n = 100) and Iowa (n = 176), respectively. The highest values of CN2O, and CNO3− were reported from Illinois and Minnesota states, and corn and potato (Solanum tuberosum), respectively. The application of anhydrous NH3 had the highest value of CN2O loss, and ammonium nitrate had the highest CNO3− loss. Among the different placement methods, the injection of fertilizer-N had the highest CN2O loss, whereas the banding of fertilizer-N had the highest CNO3− loss. The maximum CNO3− loss was higher for chisel than no-tillage practice. Both CN2O and CNO3− were positively correlated with fertilizer N application rate and the amount of water input (irrigation and rainfall). Fertilizer-N management strategies to control N loss should consider the spatio-temporal variability of interactions among climate, crop-and soil types.


2019 ◽  
Author(s):  
Rodrigo Alegria Terrazas ◽  
Senga Robertson-Albertyn ◽  
Aileen Mary Corral ◽  
Carmen Escudero-Martinez ◽  
Katharin Balbirnie-Cumming ◽  
...  

AbstractBackgroundSince the dawn of agriculture, human selection on plants has progressively differentiated input-demanding productive crops from their wild progenitors thriving in marginal areas. Barley (Hordeum vulgare), the fourth most cultivated cereal globally, is a prime example of this process. We previously demonstrated that wild and domesticated barley genotypes host distinct microbial communities in their rhizosphere. Here, we tested the hypothesis that microbiota diversification is modulated by, and responds to, nitrogen (N) application in soil and assessed the impact of microbiota taxonomic and functional compositions on plant growth.MethodsWe grew two wild (H. vulgare ssp. spontaneum) and an ‘Elite’ domesticated (H. vulgare ssp. vulgare) barley genotypes in an agricultural soil treated with and without N inputs. By using a two-pronged 16S rRNA gene amplicon sequencing and comparative metagenomics approach, we determined the impact of N application on taxonomic composition and metabolic potential of the microbial communities exposed to limiting and replete N supplies. We then implemented a plant-soil feedback experiment to assess microbiotas’ recruitment cues and contribution to plant growth.ResultsN availability emerged as a modulator of the recruitment cues of the barley bacterial microbiota as evidenced by the increased number of bacterial genera differentially recruited between unplanted soil and rhizosphere communities under N-limiting conditions. This recruitment pattern mirrored the impact of the host genotype on rhizosphere bacteria. The characterisation of the assembled metagenomes of plants exposed to N-limiting conditions revealed a metabolic specialisation of the rhizosphere microbiota compared to unplanted soil controls. This specialisation is underpinned predominantly by bacteria and is manifested by the enrichment of a core set of biological processes sustaining the adaptation of polymicrobial communities such as N utilisation, quorum sensing and motility across genotypes. The quantitative variation in a group of these biological processes defined host signatures in the barley rhizosphere metagenome. Finally, a plant-soil feedback experiment revealed that the host-mediated taxonomic diversification of the bacterial microbiota is associated with barley growth under sub-optimal N supplies.ConclusionsOur results suggest that under N limiting conditions, a substrate-driven selection process underpins the assembly of barley rhizosphere microbiota. Host-microbe and microbe-microbe interactions fine-tune this process at the taxonomic and functional level across kingdoms. The disruption of these recruitment cues negatively impacts plant growth.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


2018 ◽  
Vol 210 ◽  
pp. 330-339 ◽  
Author(s):  
Wenli Qin ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Liwei Shao

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


2017 ◽  
Vol 169 ◽  
pp. 118-123 ◽  
Author(s):  
Veronica Muñoz-Romero ◽  
Rafael J. Lopez-Bellido ◽  
Purificacion Fernandez-Garcia ◽  
Ramon Redondo ◽  
Sergio Murillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document