scholarly journals Evaluation and uncertainty estimation of the impact of air quality modelling on crop yields and premature deaths using a multi-model ensemble

2018 ◽  
Vol 633 ◽  
pp. 1437-1452 ◽  
Author(s):  
Efisio Solazzo ◽  
Angelo Riccio ◽  
Rita Van Dingenen ◽  
Luana Valentini ◽  
Stefano Galmarini
Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2020 ◽  
Vol 20 (12) ◽  
pp. 7509-7530 ◽  
Author(s):  
Lin Tang ◽  
Martin O. P. Ramacher ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Ship emissions in and around ports are of interest for urban air quality management in many harbour cities. We investigated the impact of regional and local ship emissions on urban air quality for 2012 conditions in the city of Gothenburg, Sweden, the largest cargo port in Scandinavia. In order to assess the effects of ship emissions, a coupled regional- and local-scale model system has been set up using ship emissions in the Baltic Sea and the North Sea as well as in and around the port of Gothenburg. Ship emissions were calculated with the Ship Traffic Emission Assessment Model (STEAM), taking into account individual vessel characteristics and vessel activity data. The calculated contributions from local and regional shipping to local air pollution in Gothenburg were found to be substantial, especially in areas around the city ports. The relative contribution from local shipping to annual mean NO2 concentrations was 14 % as the model domain average, while the relative contribution from regional shipping in the North Sea and the Baltic Sea was 26 %. In an area close to the city terminals, the contribution of NO2 from local shipping (33 %) was higher than that of road traffic (28 %), which indicates the importance of controlling local shipping emissions. Local shipping emissions of NOx led to a decrease in the summer mean O3 levels in the city by 0.5 ppb (∼2 %) on average. Regional shipping led to a slight increase in O3 concentrations; however, the overall effect of regional and the local shipping together was a small decrease in the summer mean O3 concentrations in the city. In addition, volatile organic compound (VOC) emissions from local shipping compensate up to 4 ppb of the decrease in summer O3 concentrations due to the NO titration effect. For particulate matter with a median aerodynamic diameter less than or equal to 2.5 µm (PM2.5), local ship emissions contributed only 3 % to the annual mean in the model domain, while regional shipping under 2012 conditions was a larger contributor, with an annual mean contribution of 11 % of the city domain average. Based on the modelled local and regional shipping contributions, the health effects of PM2.5, NO2 and ozone were assessed using the ALPHA-RiskPoll (ARP) model. An effect of the shipping-associated PM2.5 exposure in the modelled area was a mean decrease in the life expectancy by 0.015 years per person. The relative contribution of local shipping to the impact of total PM2.5 was 2.2 %, which can be compared to the 5.3 % contribution from local road traffic. The relative contribution of the regional shipping was 10.3 %. The mortalities due to the exposure to NO2 associated with shipping were calculated to be 2.6 premature deaths yr−1. The relative contribution of local and regional shipping to the total exposure to NO2 in the reference simulation was 14 % and 21 %, respectively. The shipping-related ozone exposures were due to the NO titration effect leading to a negative number of premature deaths. Our study shows that overall health impacts of regional shipping can be more significant than those of local shipping, emphasizing that abatement policy options on city-scale air pollution require close cooperation across governance levels. Our findings indicate that the strengthened Sulphur Emission Control Areas (SECAs) fuel sulphur limit from 1 % to 0.1 % in 2015, leading to a strong decrease in the formation of secondary particulate matter on a regional scale was an important step in improving the air quality in the city.


2020 ◽  
Vol 11 (03) ◽  
pp. 2041004
Author(s):  
CHENFEI QU ◽  
XI YANG ◽  
DA ZHANG ◽  
XILIANG ZHANG

Climate policies can bring local air quality and health co-benefits, which may partially or entirely offset the costs of implementing these policies. In this study, we introduce an integrated health co-benefits assessment model, the Regional Emissions-Air quality-Climate-Health (REACH) Modeling Framework, which is capable of evaluating the impact of policies on air pollution-related mortality and morbidity in the whole economic system overtime at the provincial level for China. We first provide a detailed description of the modeling framework and conduct a case study to estimate the health benefits of different climate policy scenarios. We show that a scenario consistent with the 2∘C target that peaks China’s emissions before 2025 could avoid around 190 thousand premature deaths in 2030. The health benefits could partially or fully cover the policy costs under different assumptions of the value of a statistical life (VSL). Our framework also illustrates that estimated costs and health benefits distribute unevenly across regions in China.


2018 ◽  
Vol 18 (5) ◽  
pp. 3321-3334 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. Our previously published paper (Permadi et al. 2018) focused on the preparation of emission input data and evaluation of WRF–CHIMERE performance in 2007. This paper details the impact assessment of the future (2030) black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries on air quality, health and BC direct radiative forcing (DRF). The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007), assuming “no intervention” with the linear projection of the emissions based on the past activity data for Indonesia and Thailand and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emissions in major four source sectors in Indonesia and Thailand (road transport, residential cooking, industry, biomass open burning) while for other countries the Representative Concentration Pathway 8.5 (RCP8.5) emissions were assumed. WRF–CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the modeling domain using the base year meteorology and 2030 boundary conditions from LMDZ-INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD for all scenarios with an assumption on the internal mixing state. Under RED2030, the health benefits were analyzed in terms of the number of avoided premature deaths associated with ambient PM2.5 reduction along with BC DRF reduction. Under BAU2030, the average number of the premature deaths per 100 000 people in the SEA domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut down (avoided) by 63 from RED2030. In 2007, the maximum annual average BC DRF in the SEA countries was 0.98 W m−2, which would increase to 2.0 W m−2 under BAU2030 and 1.4 W m−2 under RED2030. Substantial impacts on human health and BC DRF reduction in SEA could result from the emission measures incorporated in RED2030. Future works should consider other impacts, such as for agricultural crop production, and the cost–benefit analysis of the measures' implementation to provide relevant information for policy making.


2017 ◽  
Author(s):  
Ulas Im ◽  
Jørgen Brandt ◽  
Camilla Geels ◽  
Kaj Mantzius Hansen ◽  
Jesper Heile Christensen ◽  
...  

Abstract. The impact of air pollution on human health and the associated external costs in Europe and the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). This is the first study known to use a common health assessment approach across the two continents. The modelled surface concentrations of O3, CO, SO2 and PM2.5 from each model are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs. Along with a base case simulation, additional runs were performed introducing 20 % emission reductions both globally and regionally in Europe, North America and East Asia. Health impacts estimated by different models can vary up to a factor of three in Europe (twelve models) and the United States (three models). In Europe, the multi-model mean number of premature deaths is calculated to be 414 000 while in the U.S., it is estimated to be 160 000, in agreement with previous global and regional studies. In order to estimate the impact of biases coming from each model, two multi-model ensembles were produced, the first attributing an equal weight to each member of the ensemble, and the second where the subset of models that produce the smallest error compared to the surface observations at each time step. The latter results in increase of health impacts by up to 30 % in Europe, thus giving significantly higher mortality estimates compared to available literature. This is mostly due to a 27 % increase in the domain mean PM2.5 levels, along with a slight increase in O3 by ~ 1 %. Over the U.S., the mean PM2.5 and O3 levels decrease by 11 % and 2 %, respectively, when the optimal ensemble mean is used, leading to a decrease in the calculated health impacts by ~ 11 %. These differences encourage the use of optimal-reduced multi-model ensembles over traditional all model-mean ensembles, in particular for policy applications. Finally, the role of domestic versus foreign emission sources on the related health impacts is investigated using the 20 % emission reduction scenarios applied over the source regions as defined in the frame of HTAP2. The differences are calculated based on the models that are common in the basic multi-model ensemble and the perturbation scenarios, resulting in five models in Europe and all three models in the U.S. A 20 % reduction of global anthropogenic emissions avoids 54 000 and 27 500 premature deaths in Europe and the U.S., respectively. A 20 % reduction of North American emissions foreign emissions avoids ~ 1000 premature deaths in Europe and 25 000 premature deaths in the U.S. A 20 % decrease of emissions within the European source region avoids 47 000 premature deaths in Europe. Reducing the East Asian emission by 20 % avoids ~ 2000 premature deaths in the U.S. These results show that the domestic emissions make the largest impacts on premature death, while foreign sources make a minor contributing to adverse impacts of air pollution.


2016 ◽  
Vol 16 (6) ◽  
pp. 3825-3841 ◽  
Author(s):  
Monica Crippa ◽  
Greet Janssens-Maenhout ◽  
Frank Dentener ◽  
Diego Guizzardi ◽  
Katerina Sindelarova ◽  
...  

Abstract. The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970–2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has played in reducing emissions in 2010. However, stagnation of energy consumption at 1970 levels, but with 2010 fuel mix and energy efficiency, and assuming current (year 2010) technology and emission control standards, would have lowered today's NOx emissions by ca. 38 %, SO2 by 50 % and PM2.5 by 12 % in Europe. A reduced-form chemical transport model is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the associated impact of air quality improvements on human health and crop yield loss, showing substantial impacts of EU technologies and standards inside as well as outside Europe. We assess that the interplay of policy and technological advance in Europe had substantial benefits in Europe, but also led to an important improvement of particulate matter air quality in other parts of the world.


2015 ◽  
Vol 16 (6) ◽  
pp. 2329-2344 ◽  
Author(s):  
Stephan Thober ◽  
Rohini Kumar ◽  
Justin Sheffield ◽  
Juliane Mai ◽  
David Schäfer ◽  
...  

Abstract Droughts diminish crop yields and can lead to severe socioeconomic damages and humanitarian crises (e.g., famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrologic model (mHM). The skill of the NMME-based forecasts is compared against those based on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. The NMME-based forecasts exhibit an equitable threat score that is, on average, 69% higher than the ESP-based ones at 6-month lead time. Among the NMME-based forecasts, the full ensemble outperforms the single best-performing model CFSv2, as well as all subensembles. Subensembles, however, could be useful for operational forecasting because they are showing only minor performance losses (less than 1%), but at substantially reduced computational costs (up to 60%). Regardless of the employed forecasting approach, there is considerable variability in the forecasting skill ranging up to 40% in space and time. High skill is observed when forecasts are mainly determined by initial hydrologic conditions. In general, the NMME-based seasonal forecasting system is well suited for a seamless drought prediction system as it outperforms ESP-based forecasts consistently over the entire study domain at all lead times.


1998 ◽  
Vol 20 (1/2/3/4) ◽  
pp. 115 ◽  
Author(s):  
Anne Jaecker Voirol ◽  
Bernard Jouve ◽  
Philippe Quandatle ◽  
Julien Salles

2020 ◽  
Author(s):  
Lin Tang ◽  
Martin O. P. Ramacher ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Ship emissions in and around ports are of interest for urban air quality management in many harbour cities. We investigated the impact of regional and local ship emissions on urban air quality for 2012-year conditions in the city of Gothenburg, Sweden, the largest cargo port in Scandinavia. In order to assess the effects of ship emissions, a coupled regional and local-scale model system has been set up, using ship emissions in the Baltic Sea and the North Sea, as well as in and around the port of Gothenburg. Ship emissions are calculated with the Ship Traffic Emission Assessment Model (STEAM) model taking into account individual vessel characteristics and vessel activity data. The calculated contributions from local and regional shipping to local air pollution in Gothenburg were found substantial, especially in areas around the city ports. The local shipping contribution of NO2 to annual mean concentrations was up to 3.3 ppb, together with contribution from regional shipping at the North Sea and the Baltic Sea, the contribution was up to 4.3 ppb. In an area close to the city terminals, the contribution of NO2 from local shipping was higher than that of the road traffic, which indicates importance of controlling the local shipping emissions. The local shipping emissions of NOx decreased the summer mean O3 levels in the city by 0.5 ppb on annual mean. The regional shipping lead to a slight increase in the O3 concentrations, however, the overall effect of the regional and the local shipping together was a small decrease of the summer mean O3 concentrations in the city. For PM2.5, the local ship emissions contributed with 0.1 μg m−3 to the annual mean concentrations on the city-domain average, regional shipping was under 2012 conditions a larger contributor to the local PM2.5 than the local shipping, with an annual mean contribution of 0.5 μg m−3 on the city-domain average. Based on the modelled local and regional shipping contributions, the health effects of PM2.5, NO2 and ozone were assessed using the ALPHA-RiskPoll (ARP) model. An effect of the shipping-associated PM2.5 exposure in the modelled area was a mean loss of the life expectancy by 0.015 years per person. The relative contribution of the local shipping to the impact of total PM2.5 was 2.2 % which can be compared to 5.3 % contribution from the local road traffic. The relative contribution of the regional shipping was 10.3 %. The mortalities due to the exposure to NO2 associated to shipping were calculated to be 2.6 premature deaths/year. The relative contribution of the local and the regional shipping to the total exposure to NOLsub>2 in the reference simulation was 14 % and 21 %, respectively. The shipping related ozone exposures were due to the NO titration effect, leading to negative number of premature deaths. Our study show that overall health impacts of regional shipping can be more important than those of local shipping, emphasising that abatement policy options on city-scale air pollution require close cooperation across governance levels. Our findings indicate that the strengthened Sulphur Emission Control Areas (SECA) fuel sulphur limit from 1 % to 0.1 % in 2015, leading to strong decrease in formation of secondary particulate matter on regional scale, has been an important step in improving of the air quality in the city.


Sign in / Sign up

Export Citation Format

Share Document