Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components

2018 ◽  
Vol 644 ◽  
pp. 229-236 ◽  
Author(s):  
M. Antónia Nunes ◽  
Anabela S.G. Costa ◽  
Sílvia Bessada ◽  
Joana Santos ◽  
Helder Puga ◽  
...  
2020 ◽  
Vol 11 (3) ◽  
pp. 2238-2254 ◽  
Author(s):  
Tânia B. Ribeiro ◽  
Ana Oliveira ◽  
Débora Campos ◽  
João Nunes ◽  
António A. Vicente ◽  
...  

Liquid-enriched fraction (LOPP) from the by-product olive pomace is a powder with great potential as a source of bioactive compounds.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2021 ◽  
Author(s):  
Yukun Song ◽  
Kangjing Liu ◽  
Wentao Su ◽  
Shuai Hou ◽  
Tongtong Che ◽  
...  

Nanoparticles were extensively applied as carriers for bioactive compounds delivery to improve their bio-availability. In this paper, we developed a novel type of water-soluble and ultra-small food-borne nanoparticles (FNs) from...


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


2021 ◽  
Vol 76 (1) ◽  
pp. 1-10
Author(s):  
L. G. Bogatyrev ◽  
A. I. Benediktova ◽  
M. M. Karpukhin ◽  
V. M. Telesnina ◽  
N. I. Zhilin ◽  
...  

1976 ◽  
Vol 21 (2) ◽  
pp. 243-249 ◽  
Author(s):  
F. Audibert ◽  
L. Chédid ◽  
P. Lefrancier ◽  
J. Choay

1968 ◽  
Vol 51 (5) ◽  
pp. 1046-1049
Author(s):  
R L Baron

Abstract Administration of 2 g carbonyl-14C-carbaryl to a lactating cow resulted in radioactive residues in milk of approximately 1 % of the administered dose. Analysis of the distribution of radioactivity in skim milk showed 13 and 87% of the radioactivity present as organic-soluble and water-soluble components, respectively. Crystallization of lactose from the water-soluble components resulted in removal of 90—95% of the 14C radioactivity. The data obtained indicate that following hydrolysis of the carbonyl-14- C-carbaryl, a small quantity of 14C02 was incorporated into lactose


2020 ◽  
Vol 16 (No. 1) ◽  
pp. 50-58
Author(s):  
Yana Timofeeva ◽  
Lyudmila Purtova ◽  
Alexey Emelyanov ◽  
Maxim Burdukovskii ◽  
Irina Kiseleva ◽  
...  

We quantified the soluble fractions of the soil organic carbon (SOC) concentrations and the total and water-soluble trace elements in soils contaminated by household waste and remediated via the addition of green manure over 13 years and identified the main factors controlling the vertical distribution and accumulation of the trace elements. Green manure favoured the active formation of soil organic matter. The SOC of the examined soils was characterised by the active stabilisation by mineral soil compounds, but by a low degree of humification. The soils showed increased concentrations of Cr and Ni ions. The SOC and different soil compounds enriched by Si, Ca, and Mn ions were the important determinant for the distribution of Sr, V and Cu ions, as well as for the distribution of Pb and Cr ions bound to the water-soluble components of the soils. The low degree of SOC humification may be one of the main reasons of the high concentrations of Cu and Pb ions in the composition of the water-soluble soil compounds. The nickel ions were mainly associated with compounds enriched by the Al and Fe ions. The extremely high percentage concentration of the Ni ions in the water-soluble components of the soils may be result of the absence of the Ni ions adsorption by humic substances.


Sign in / Sign up

Export Citation Format

Share Document