Analysis and optimisation of a novel ‘almond-refinery’ concept: Simultaneous production of biofuels and value-added chemicals by hydrothermal treatment of almond hulls

Author(s):  
Javier Remón ◽  
Javier Latorre-Viu ◽  
Avtar S. Matharu ◽  
José Luis Pinilla ◽  
Isabel Suelves
Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Roy Nitzsche ◽  
Hendrik Etzold ◽  
Marlen Verges ◽  
Arne Gröngröft ◽  
Matthias Kraume

Hemicellulose and its derivatives have a high potential to replace fossil-based materials in various high-value-added products. Within this study, two purification cascades for the separation and valorization of hemicellulose and its derived monomeric sugars from organosolv beechwood hydrolyzates (BWHs) were experimentally demonstrated and assessed. Purification cascade 1 included hydrothermal treatment for converting remaining hemicellulose oligomers to xylose and the purification of the xylose by nanofiltration. Purification cascade 2 included the removal of lignin by adsorption, followed by ultrafiltration for the separation and concentration of hemicellulose. Based on the findings of the experimental work, both cascades were simulated on an industrial scale using Aspen Plus®. In purification cascade 1, 63% of the oligomeric hemicellulose was hydrothermally converted to xylose and purified by nanofiltration to 7.8 t/h of a xylose solution with a concentration of 200 g/L. In purification cascade 2, 80% of the lignin was removed by adsorption, and 7.6 t/h of a purified hemicellulose solution with a concentration of 200 g/L was obtained using ultrafiltration. The energy efficiency of the cascades was 59% and 26%, respectively. Furthermore, the estimation of specific production costs showed that xylose can be recovered from BWH at the cost of 73.7 EUR/t and hemicellulose at 135.1 EUR/t.


2018 ◽  
Vol 247 ◽  
pp. 744-752 ◽  
Author(s):  
Nadja A. Henke ◽  
Daniela Wiebe ◽  
Fernando Pérez-García ◽  
Petra Peters-Wendisch ◽  
Volker F. Wendisch

2019 ◽  
Vol 11 (4) ◽  
pp. 1060 ◽  
Author(s):  
Norfadhilah Hamzah ◽  
Koji Tokimatsu ◽  
Kunio Yoshikawa

Malaysia generated 156,665 gigawatt-hours (GWh) of electricity in 2016 of which the biggest share of 48.4% was sourced from coal and coke. Malaysia coal consumption was met by 90.5% of imported coal due to high demand from the power sector. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper reviews the potential of oil palm residues and municipal solid waste (MSW) for alternative coal replacement employing hydrothermal treatment (HTT). In 2017, about 51.19 million tonnes (Mt) of oil palm waste was available with 888.33 peta-joule (PJ) energy potential to generate 88.03 terawatt-hours (TWh) electricity from oil palm fronds (OPF) and oil palm trunks (OPT), empty fruit bunch (EFB), mesocarp fibre (MF), palm kernel shell (PKS) and palm oil mill effluent (POME). Meanwhile, the MSW energy potential and electricity generation potential was estimated at 86.50 PJ/year and 8.57 TWh/year, respectively. HTT with washing co-treatment eliminates the use of drying for converting range of biomass and MSW into clean solid fuel known as hydrochar. The hydrochar increased in caloric value with lower moisture, Potassium (K) and Chlorine (Cl) contents. These value-added fuels can be used as coal alternative and reduce dependency on imported coal for energy security in Malaysia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alok Patel ◽  
Stephan Liefeldt ◽  
Ulrika Rova ◽  
Paul Christakopoulos ◽  
Leonidas Matsakas

AbstractOmega-3 fatty acids, and specifically docosahexaenoic acid (DHA), are important and essential nutrients for human health. Thraustochytrids are recognised as commercial strains for nutraceuticals production, they are group of marine oleaginous microorganisms capable of co-synthesis of DHA and other valuable carotenoids in their cellular compartment. The present study sought to optimize DHA and squalene production by the thraustochytrid Schizochytrium limacinum SR21. The highest biomass yield (0.46 g/gsubstrate) and lipid productivity (0.239 g/gsubstrate) were observed with 60 g/L of glucose, following cultivation in a bioreactor, with the DHA content to be 67.76% w/wtotal lipids. To reduce costs, cheaper feedstocks and simultaneous production of various value-added products for pharmaceutical or energy use should be attempted. To this end, we replaced pure glucose with organosolv-pretreated spruce hydrolysate and assessed the simultaneous production of DHA and squalene from S. limacinum SR21. After the 72 h of cultivation period in bioreactor, the maximum DHA content was observed to 66.72% w/wtotal lipids that was corresponded to 10.15 g/L of DHA concentration. While the highest DHA productivity was 3.38 ± 0.27 g/L/d and squalene reached a total of 933.72 ± 6.53 mg/L (16.34 ± 1.81 mg/gCDW). In summary, we show that the co-production of DHA and squalene makes S. limacinum SR21 appropriate strain for commercial-scale production of nutraceuticals.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1082 ◽  
Author(s):  
Juan Cubero-Cardoso ◽  
Ángeles Trujillo-Reyes ◽  
Antonio Serrano ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Rafael Borja ◽  
...  

This study was on the comparison of hydrothermal treatments at 170 °C (steam injection) and 220 °C (steam explosion) to solubilize the organic matter contained in residual strawberry extrudate, focusing on phenolic compounds that were susceptible to be extracted and on sugars. After the extraction step, the remaining strawberry extrudate phases were subjected to anaerobic digestion to generate biogas that would compensate the energy requirements of the suggested hydrothermal treatments and to stabilize the remaining waste. Hydrothermal treatment at 220 °C allowed the recovery of 2053 mg of gallic acid eq. per kg of residual strawberry extrudate. By contrast, after hydrothermal treatment at 170 °C, only 394 mg of gallic acid eq. per kg of residual strawberry extrudate was recovered. Anaerobic digestion processes were applied to the de-phenolized liquid phase and the solid phase together, which generated similar methane productions, i.e., around 430 mL CH4/g volatile solids, after both 170 °C and 220 °C hydrothermal treatments. Considering the latest observation, hydrothermal treatment at 220 °C is a preferable option for the valorization of residual strawberry extrudate (RSE) due to the high solubilization of valuable phenolic compounds that can be recovered.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119265
Author(s):  
Daniel G. Gomes ◽  
Michele Michelin ◽  
Aloia Romaní ◽  
Lucília Domingues ◽  
José A. Teixeira

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4004 ◽  
Author(s):  
Pier Giorgio Schiavi ◽  
Flavia Carla dos Santos Martins Padoan ◽  
Pietro Altimari ◽  
Francesca Pagnanelli

In this work, an innovative hydrometallurgical recycling route for the recovery of all the materials composing Li-MnO2 primary batteries was proposed. End-of-life batteries were mechanically treated in an innovative pilot plant where a cryogenic crushing was performed. The mechanical treatment allowed for the release of the electrodic powder contained in the batteries with the simultaneous recovery of 44 kg of steel and 18 kg of plastics from 100 kg of batteries. Electrodic powder was employed as the raw material for the synthesis of LiMnPO4 nanoparticles. To obtain the synthesis precursors, selective sequential leaching of Li and Mn was performed. Li was extracted via water washing the electrodic powder and Li2CO3 and a purity of 99% was recovered. The black mass containing Mn oxides was leached using phosphoric acid, which gave a Mn-bearing precursor solution that was directly used for the hydrothermal synthesis of LiMnPO4 nanoparticles. A preliminary materials balance of the process was presented, indicating that the proposed process should be an easy hydrometallurgical route for the recycling of primary lithium batteries. In addition, the simultaneous production of high-value-added products that could be reintroduced into the battery manufacturing chain could ensure the economic feasibility of the process.


Author(s):  
Sayuri Okunaka ◽  
Yugo Miseki ◽  
Kazuhiro Sayama

Photoelectrochemical simultaneous production of H2 and hypochlorous acid (HClO) as a value-added oxidation reagent compared with O2 on a semiconductor electrode by using visible light is one of the breakthrough...


Sign in / Sign up

Export Citation Format

Share Document