BDE-209 caused gut toxicity through modulating the intestinal barrier, oxidative stress, autophagy, inflammation, and apoptosis in mice

Author(s):  
Weike Shaoyong ◽  
Wanrong Zhang ◽  
Chenyang Wang ◽  
Zhongyun Kou ◽  
Wenlong Yong ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2021 ◽  
Author(s):  
Tong Wu ◽  
Xiaoya Wang ◽  
Hua Xiong ◽  
Zeyuan Deng ◽  
Xin Peng ◽  
...  

Tetrastigma hemsleyanum, a precious edible and medicinal plant in China, has attracted extensive research attention in recent years due to its highly traditional value for the treatment of various diseases....


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ying-ru Su ◽  
Yu-pu Hong ◽  
Fang-chao Mei ◽  
Chen-yang Wang ◽  
Man Li ◽  
...  

Objective. For patients with severe acute pancreatitis (SAP), a high body mass index (BMI) increases the possibility of infection derived from the intestine. In this study, we evaluate whether TAK242 can alleviate severe acute pancreatitis-associated injury of intestinal barrier in high-fat diet-fed rats. Methods. A SAP model was established by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct. Thirty Sprague-Dawley (SD) adult rats were randomly divided into five groups: standard rat chow (SRC) normal (SN), SRC SAP (SAP), high-fat diet normal (HN), HFD SAP (HSAP), and TLR4 inhibitor pretreatment HFD SAP (HAPT) groups. Intraperitoneal injection of 3 mg/kg TAK242 was administered 30 minutes before SAP model establishment in the HAPT group. Rats were sacrificed 12 hours after SAP modeling, followed by blood and pancreatic and distal ileum tissue collection for further analyses. Changes in the pathology responses of the rats in each group were assessed. Result. Analyses of serum amylase, lipase, cholesterol, triglyceride, IL-1β, IL-6, DAO, and serum endotoxin as well as tight junction protein expression including zonula occluden-1 and occludin indicated that high-fat diet aggravated SAP-induced intestinal barrier injury via increasing inflammatory response. In addition, the level of necroptosis was significantly higher in the SAP group compared with the SN group while the HSAP group exhibited more necroptosis compared with the SAP group, indicating the important role of necroptosis in pancreatitis-associated gut injury and illustrating that high-fat diet aggravated necroptosis of the ileum. Pretreatment with TLR4 inhibitor significantly alleviated inflammatory response and reduced necroptosis and level of oxidative stress while improving intestinal barrier function. Conclusion. High-fat diet aggravated SAP-induced intestinal barrier injury via inflammatory reactions, necroptosis, and oxidative stress. Inhibition of TLR4 by TAK242 reduced inflammation, alleviated necroptosis, and lowered the level of oxidative stress and then protected the intestinal barrier dysfunction from SAP in high-fat diet-fed rats.


2010 ◽  
Vol 298 (5) ◽  
pp. G625-G633 ◽  
Author(s):  
Wei Zhong ◽  
Craig J. McClain ◽  
Matthew Cave ◽  
Y. James Kang ◽  
Zhanxiang Zhou

Disruption of the intestinal barrier is a causal factor in the development of alcoholic endotoxemia and hepatitis. This study was undertaken to determine whether zinc deficiency is related to the deleterious effects of alcohol on the intestinal barrier. Mice were pair fed an alcohol or isocaloric liquid diet for 4 wk, and hepatitis was detected in association with elevated blood endotoxin level. Alcohol exposure significantly increased the permeability of the ileum but did not affect the barrier function of the duodenum or jejunum. Reduction of tight-junction proteins at the ileal epithelium was detected in alcohol-fed mice although alcohol exposure did not cause apparent histopathological changes. Alcohol exposure significantly reduced the ileal zinc concentration in association with accumulation of reactive oxygen species. Caco-2 cell culture demonstrated that alcohol exposure increases the intracellular free zinc because of oxidative stress. Zinc deprivation caused epithelial barrier disruption in association with disassembling of tight junction proteins in the Caco-2 monolayer cells. Furthermore, minor zinc deprivation exaggerated the deleterious effect of alcohol on the epithelial barrier. In conclusion, epithelial barrier dysfunction in the distal small intestine plays an important role in alcohol-induced gut leakiness, and zinc deficiency attributable to oxidative stress may interfere with the intestinal barrier function by a direct action on tight junction proteins or by sensitizing to the effects of alcohol.


Sign in / Sign up

Export Citation Format

Share Document