Better urban vegetation planning for maximum utility in air pollutant reduction: A theoretical perspective and preliminary analysis in Chinese cities

2020 ◽  
Vol 62 ◽  
pp. 102377 ◽  
Author(s):  
Lijian Han ◽  
Xiaorui Tan ◽  
Weiqi Zhou ◽  
Weifeng Li ◽  
Yuguo Qian
Author(s):  
Ze Tian ◽  
Fang-Rong Ren ◽  
Qin-Wen Xiao ◽  
Yung-Ho Chiu ◽  
Tai-Yu Lin

The Yangtze River Economic Belt (YREB) is one of the most important areas for the economic growth of China, but rapid development has caused tremendous damage to the energy and ecological environments of the region. Very few studies have compared the carbon emissions of YREB with that of non-YREB and furthermore, have not considered regional differences and radial or non-radial characteristics in their analysis. This paper thus selects the energy consumption data of 19 provinces and cities in YREB and 19 provinces and cities in non-YREB from 2013 to 2016, constructs the modified meta-frontier Epsilou-based measure (EBM) data envelopment analysis (DEA) model and adds an undesirable factor, energy consumption, and CO2 emission efficiency of each province and city of the two regions. The results are as follows. (1) China’s provinces and cities have different energy efficiency scores in energy consumption, economic growth, and CO2 emissions. The regional ranks and technology gaps of five provinces and cities in non-YREB and of four provinces and cities in YREB exhibit a decline. Overall, the ranks and technology gaps of the provinces and cities in YREB are significantly lower than those in non-YREB, meaning that there is greater room for efficiency improvement in the latter region. (2) The gross domestic product (GDP) and CO2 efficiency values of non-YREB provinces present great differences, especially the CO2 efficiency value that ranges from 0.2 to 1, while their values in YREB are more balanced with little difference between provinces and cities. Thus, YREB is more coordinated in terms of energy savings and air pollutant reduction. (3) Some cities with good economic development such as Beijing, Shanghai, and Tianjin have regional and technology gap values of one, indicating that they not only target economic growth but also address energy savings and air pollutant reduction. The regional rank and technology gap values of some underdeveloped provinces such as Neimenggu, Ningxia, and Qinghai are also one. Finally, this research proposes countermeasures and recommendations to both areas.


2016 ◽  
Author(s):  
B. Bonn ◽  
E. von Schneidemesser ◽  
D. Andrich ◽  
J. Quedenau ◽  
H. Gerwig ◽  
...  

Abstract. Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both, emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between the June 2nd and August 29th in the metropolitan area of Berlin-Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at an urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of temperature and particulates in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2, and pointwise volatile organic compounds (VOCs) identification. The quantification displayed notable horizontal heterogeneity of the short lived gases and particle number concentrations. E.g. concentrations of the traffic related chemical species CO and NO varied by more than ±20 % and ±60 % on the scale of one hundred meters, respectively. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e. not being caused by long range transport. Surface based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6–2.1 °C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings effective future mitigation activities to provide a more sustainable and healthier urban environment would focus predominantly on reducing fossil-fuel emissions from traffic as well as on increasing vegetated areas.


Author(s):  
andrio adwibowo

The social distancing as a response to COVID 19 pandemic has led to the exceptional reductions of daily routine people activities and vehicle uses mainly in city. This same situation was also experienced by several busy, large, and populous cities in Southeast Asia (SA) countries. Correspondingly, this study aimed to test the hypothesis that the social distancing implementation period has increased the air quality in the term of carbon monoxide (CO) emission reduction as drawn from Jakarta city as an example of the one of populated cities in SA region. The CO was measured in parts per billions (ppb) and monitored on the daily basis employing remote sensor platform. The monitor periods were started from January, February, March, and April 2020 with 10 measurement days for each month. The social distancing was implemented from mid of March to the recent April. The CO measurement data were statistically tested to justify the significant effects of social distancing on the CO levels. Based on the CO data analysis, the order of CO mean by months is February > January > March > April. The CO levels for January, February, March, and April were 87.46 ppb (95%CI: 83.54-91.37), 88.20 ppb (95%CI: 81.65-94.74), 86.38 (95%CI: 81.06-91.69), and 78.68 (95%CI: 74.03-83.32) respectively. This study also find significant difference (p<0.05) of CO levels especially in April when social distancing has been implemented. Hence, these findings illustrate the potential air pollutant reduction gained from implementing social distancing as can be seen in April.


2019 ◽  
Vol 116 (32) ◽  
pp. 15883-15888 ◽  
Author(s):  
Erika Garcia ◽  
Robert Urman ◽  
Kiros Berhane ◽  
Rob McConnell ◽  
Frank Gilliland

Childhood asthma is a major public health concern and has significant adverse impacts on the lives of the children and their families, and on society. There is an emerging link between air pollution, which is ubiquitous in our environment, particularly in urban centers, and incident childhood asthma. Here, using data from 3 successive cohorts recruited from the same 9 communities in southern California over a span of 20 y (1993 to 2014), we estimated asthma incidence using G-computation under hypothetical air pollution exposure scenarios targeting nitrogen dioxide (NO2) and particulate matter <2.5 μm (PM2.5) in separate interventions. We reported comparisons of asthma incidence under each hypothetical air pollution intervention with incidence under the observed natural course of exposure; results that may be more tangible for policymakers compared with risk ratios. Model results indicated that childhood asthma incidence rates would have been statistically significantly higher had the observed reduction in ambient NO2 in southern California not occurred in the 1990s and early 2000s, and asthma incidence rates would have been significantly lower had NO2 been lower than what it was observed to be. For example, compliance with a hypothetical standard of 20 ppb NO2 was estimated to result in 20% lower childhood asthma incidence (95% CI, −27% to −11%) compared with the exposure that actually occurred. The findings for hypothetical PM2.5 interventions, although statistically significant, were smaller in magnitude compared with results for the hypothetical NO2 interventions. Our results suggest a large potential public health benefit of air pollutant reduction in reduced incidence of childhood asthma.


2021 ◽  
Vol 13 (21) ◽  
pp. 11775
Author(s):  
Shanyou Duan ◽  
Qian Liu ◽  
Dumei Jiang ◽  
Yulin Jiang ◽  
Yinzhi Lin ◽  
...  

Air pollution in China has attracted wide interest from the public and academic communities. PM2.5 is the primary air pollutant across China. PM2.5 mainly comes from human activities, and the natural environment and urban built environment affect its distribution and diffusion. In contrast to American and European cities, Chinese cities are much denser, and studies on the relationships between urban form and air quality in high-density Chinese cities are still limited. In this paper, we used the ordinary least square (OLS) and geographical weighted regression (GWR) models, selected an already high-density city, Shenzhen, as the study area, and explored the effects of the natural and built environments on air pollution. The results showed that temperature always had a positive influence on PM2.5 and wind speed had a varied impact on PM2.5 within the city. Based on the natural factors analysis, the paper found that an increase in the floor area ratio (FAR) and road density may have caused the increase in the PM2.5 concentration in the central city. In terms of land use mix, land use policies should be adopted separately in the central city and suburban areas. Finally, in terms of spatial heterogeneity, the GWR models achieved much better performances than the global multivariate regression models, with lower AICc and RMSE values and higher adjusted R2 values, ultimately explaining 60% of the variance across different city areas. The results indicated that policies and interventions should be more targeted to improve the air environment and reduce personal exposure according to the spatial geographical context.


2016 ◽  
Vol 23 (19) ◽  
pp. 19541-19550 ◽  
Author(s):  
Gabriele Guidolotti ◽  
Michele Salviato ◽  
Carlo Calfapietra

Sign in / Sign up

Export Citation Format

Share Document