Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes

2017 ◽  
Vol 265 ◽  
pp. 10-19 ◽  
Author(s):  
Bettina Fasolt ◽  
Micah Hodgins ◽  
Gianluca Rizzello ◽  
Stefan Seelecke
Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 468 ◽  
Author(s):  
Xin He ◽  
Gengzhe Shen ◽  
Ruibin Xu ◽  
Weijia Yang ◽  
Chi Zhang ◽  
...  

Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters—mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape—have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jose Enrico Q. Quinsaat ◽  
Iurii Burda ◽  
Ronny Krämer ◽  
Daniel Häfliger ◽  
Frank A. Nüesch ◽  
...  

Abstract Conductive inks consisting of graphene and carbon black conductive fillers into a polydimethylsiloxane (PDMS) matrix, which can be processed into thin films by screen printing are developed. The influence of filler composition and content on mechanical and electrical properties of the conductive composites is investigated. The best composites were evaluated as electrode material for dielectric elastomer actuators and for piezoelectric sensors. With increasing filler content, the electrical properties of the resulting composites of graphite nanoplates (GNPs) or a binary mixture of GNPs and carbon black (CB) with PDMS (Mw = 139 kg/mol) are enhanced. Hence, PDMS composites filled with GNPs (42 wt.%) or a binary mixture of GNPs/CB (300/150 ratio, 30 wt.% of total filler loading) exhibited constant contact resistance values of 0.5 and 5 Ω determined in life-cycle test, respectively, thus rendering them suitable as electrode materials for piezosensors. On the other hand, dielectric elastomer actuators require more flexible electrode materials, which could be tuned by varying the polymer molecular weight and by reducing the filler content. Therefore, a composite consisting of PDMS (Mw = 692 kg/mol) and a binary filler mixture of GNPs/CB (150/75 ratio, 18 wt.% of total filler loading) was used for producing the electrodes of dielectric elastomer transducers (DETs). The produced DETs with different electrode thicknesses were characterized in terms of their performance. The negligible hysteresis of the electrode materials is favorable for sensor and actuator applications.


2019 ◽  
Vol 48 (5) ◽  
pp. 456-463
Author(s):  
Muhammad Ali ◽  
Long Lin ◽  
Saira Faisal ◽  
Iftikhar Ali Sahito ◽  
Syed Imran Ali

Purpose The purpose of this study is to explain the effects of screen printing parameters on the quantity of ink deposited and the print quality in the context of printing of functional inks. Both these aspects of printing are crucial in the case of conventional and functional printing. This is because, in the case of conventional printing, the quantity of ink deposit affects the color strength while in the case of functional printing, it directly affects the resulting functionality of the ink layer. Design/methodology/approach In this work, an automatic lab-scale screen printer was used to print functional inks on a paper board substrate. The printing parameters, i.e. printing pressure and squeegee angle were altered and the resulting effects on the quantity of ink that was deposited were recorded. The quantity of ink deposit was related to its surface resistivity. In addition, the quality of the print was also assessed by examining the design registration quality. Findings The authors found that altering the squeegee angle has a significant effect on the properties of the resulting ink deposit. More importantly, the authors found that the deflection in the rubber blade squeegee was greatly dependent on the initial angle of the squeegee at the start of the printing stroke. For each set value of the squeegee angle that was considered, the actual angle during printing was recorded and used in the analysis. A printing pressure of three bars and squeegee angle of 20° resulted in the maximum weight of ink deposit with a correspondingly lowest surface resistivity. Practical implications This study is envisaged to have considerable practical implications in the rapidly growing field of functional printing of flexible substrates including, but not limited to, textiles. This is because, the study provides an insight into the effects of printing parameters on the characteristics of a functional ink deposit. Originality/value Screen printing of flexible substrates is a well-developed and arguably the most widely used printing technique, particularly for textiles. Numerous studies report on the analysis of various aspects of screen printing. However, to the best of the knowledge, the effects of printing parameters on the characteristics of functional inks, such as electrically conductive inks, have not been studied in this manner.


2020 ◽  
Vol 90 (15-16) ◽  
pp. 1749-1769 ◽  
Author(s):  
Josue Ferri ◽  
Raúl Llinares Llopis ◽  
Jorge Moreno ◽  
Jose Vicente Lidón-Roger ◽  
Eduardo Garcia-Breijo

The design and development of textile-based capacitive sensors requires the implementation of textile capacitors with a determined capacitance. One of the main techniques to obtain these sensors is the screen-printing of conductive and dielectric inks on textiles. This paper investigates the fabrication parameters that have the most influence when designing and implementing a screen-printed capacitive sensor. In this work, a textile has been used directly as the dielectric part, influencing sensitively the value of the permittivity and the thickness of the dielectric of the capacitor. These are two fundamental parameters for the estimation of its capacitance. The choice of the conductive ink, its viscosity and solid content, as well as printing parameters, such as printing direction, also impact on the manner for obtaining the electrodes of the capacitive sensor. Although the resulting electrodes do not represent an important parameter for the estimation of the capacitance, it determines the selection of fabrics that can be printed. As a result of the investigation, the paper provides a guideline to choose the materials, such as fabrics or inks, as well as the printing parameters, to implement e-textile applications based on projected capacitive technologies. The experiments carried out on different fabrics and inks have provided results with capacities of less than 60 pF, the limit where the sensors based on capacitive technologies are located.


2021 ◽  
Author(s):  
Vanja Kokol ◽  
Vera Vivod ◽  
Zdenka Peršin ◽  
Taina Kamppuri ◽  
Polona Dobnik-Dubrovski

Abstract Low moisture absorbency of hydrophobically coated flame-resistant (FR) fabrics do not correlate well with the thermophysiological comfort. In this frame, we were the first to study the effect of screen-printed microfibrillated cellulose (MFC) on fabric’s breathability and moisture build-up and transfer as user-friendly and wear-related comfortable coating. The amount of MFC applied and its patterning was varied using different printing parameters, and the density and thickness of FR fabric, and studied by add-on measurement and microscopic imaging. The effect of MFC coating and its durability (attachment) after a post-printing of hydrophobic polyacrylate on the same (layer-by-layer) or other side of the fabrics was considered, thus to maintain one side of the fabric (facing towards the wearer) hydrophilic while keeping the other side (facing outward) hydrophobic. The results showed that MFC provides uniform and repeatable printing, which gave homogeneous patterning with good layering on the fabrics, although, resulting in the MFC concentration, squeegee’ pressure, and fabric’ structure dependent add-on, its imprinting and co-crosslinking within the polyacrylate. This slightly reduced the fabric air-permeability, but increased it surfaces wetting, moisture uptake kinetic and capacity (hydroscopicity), without affecting the water vapour transfer. Besides, the polyacrylate could fix the MFC pre-printed on the other side of the fabric, thus maintaining its hydrophilicity, being more pronounced in the case of less open and thicker fabric, while improving its tensile /tear strengths and abrasion resistance, without deterioration of the fabric`s flammability.


2015 ◽  
Vol 748 ◽  
pp. 11-14 ◽  
Author(s):  
Wen Wen Kong ◽  
Bo Gao ◽  
Chun Ping Jiang ◽  
Ai Min Chang

In order to obtain high quality ultrathin free-standing ceramic chips, a new manufacturing process based on the screen printing and the cold isostatic pressing process has been developed. 1) In this process, an ultrathin free-standing green sheet (less than 20 μm thick) can be achieved successfully as shown in Fig. 1. After sintering, an ultrathin free-standing ceramic chip (less than 20 μm thick) with good density uniformity, can be obtained as shown in Fig. 2. In addition, the thicknesses of the ultrathin chips can be adjusted by changing the printing parameters for different application requirements. Such process can significantly widen the scope and applicability of the ultrathin chips in many kinds of materials.


Sign in / Sign up

Export Citation Format

Share Document