A Coarse-to-Fine Detection and Localization Method for Multiple Human Subjects under Through-wall Condition Using a New Telescopic SIMO UWB Radar

2021 ◽  
pp. 113064
Author(s):  
Yang Zhang ◽  
Yangyang Ma ◽  
Xiao Yu ◽  
Pengfei Wang ◽  
Hao Lv ◽  
...  
2007 ◽  
pp. 194-221 ◽  
Author(s):  
David Lo

In applications where the locations of human subjects are needed, for example, human-computer interface, video conferencing, and security surveillance applications, localizations are often performed using single sensing modalities. These mono localization modalities, such as beamforming microphone array and video-graphical localization techniques, are often prone to errors. In this chapter, a modular multimodal localization framework was constructed by combining multiple mono localization modalities using a Bayesian network. As a case study, a joint audio-video talker localization system for the video conferencing application was presented. Based on the results, the proposed multimodal localization method outperforms localization methods, in terms of accuracy and robustness, when compare with mono modal modalities that rely only on audio or video.


Frequenz ◽  
2016 ◽  
Vol 70 (5-6) ◽  
Author(s):  
Zohra Slimane ◽  
Abdelmalek Abdelhafid

AbstractThis paper focuses on through wall stationary human target detection and localization using an OFDM based Ultra-Wide Band radar (OFDM-UWB). Our investigations relate to a monostatic UWB radar operating in the band [1.99–3] GHz at central frequency 2.5 GHz and emitting a power of –22 dBm, meeting FCC UWB spectrum density requirements. The detection of a human being is possible due to respiratory movements of the chest. Using the short-term Fourier transform, along with the optimal filtering and an averaging technique for background clutter suppression, interesting information could be extracted from the recorded waveforms about the presence and position of a human being behind a 20-cm-thick concrete wall. The results of the experimental simulations under Matlab/simulink are then presented. A maximum range of 4 m was found to be possible with a minimum system operating SNR of 5 dB.


2014 ◽  
Vol 635-637 ◽  
pp. 924-927
Author(s):  
Tao Jin ◽  
Ze Yuan Zhou

To detect and locate the leakage of the pipe correctly, genetic algorithm is combined with Bayesian theory to determine the leaked pipes. Leakage detection and leakage location are carried out separately. Leakage detection is conducted based on the assumption that there is only one leaked pipe, and the simulation result demonstrates its feasibility. When the leakage detection demonstrates there is leaked pipe in the water distribution system, leakage location starts. Based on the information gathered by the manometers, leakage probability in different combinations of the virtual nodal demand can be fixed according to calculating the pressure of the monitored node, then GA is applied to search the maximum Bayesian value, the pipes with maximum Bayesian leakage possibility are believed to be leaked pipes. Optimization programme was made with combination of Matlab and Epanet, numerical simulation results demonstrate the feasibility and effectiveness of the proposed method.


Author(s):  
Dounia Daghouj ◽  
Marwa Abdellaoui ◽  
Mohammed Fattah ◽  
Said Mazer ◽  
Youness Balboul ◽  
...  

<span>The pulse ultra-wide band (UWB) radar consists of switching of energy of very short duration in an ultra-broadband emission chain, and the UWB signal emitted is an ultrashort pulse, of the order of nanoseconds, without a carrier. These systems can indicate the presence and distances of a distant object, call a target, and determine its size, shape, speed, and trajectory. In this paper, we present a UWB radar system allowing the detection of the presence of a target and its localization in a road environment based on the principle of correlation of the reflected signal with the reference and the determination of its correlation peak.</span>


Sensors ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 189-214 ◽  
Author(s):  
Jiangwen Wan ◽  
Yang Yu ◽  
Yinfeng Wu ◽  
Renjian Feng ◽  
Ning Yu

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3750 ◽  
Author(s):  
Lalida Tantiparimongkol ◽  
Pattarapong Phasukkit

This research proposes a scheme of field programmable gate array (FPGA) to generate an impulse-radio ultra-wideband (IR-UWB) pulse. The FPGA scheme consists of three parts: digital clock manager, four-delay-paths stratagem, and edge combiner. The IR-UWB radar system is designed to detect human subjects from their respiration underneath the rubble in the aftermath of an earthquake and to locate the human subjects based on range estimation. The proposed IR-UWB radar system is experimented with human subjects lying underneath layers of stacked clay bricks in supine and prone position. The results reveal that the IR-UWB radar system achieves a pulse duration of 540 ps with a bandwidth of 2.073 GHz (fractional bandwidth of 1.797). In addition, the IR-UWB technology can detect human subjects underneath the rubble from respiration and identify the location of human subjects by range estimation. The novelty of this research lies in the use of the FPGA scheme to achieve an IR-UWB pulse with a 2.073 GHz (117 MHz–2.19 GHz) bandwidth, thereby rendering the technology suitable for a wide range of applications, in addition to through-obstacle detection.


2013 ◽  
Vol 433-435 ◽  
pp. 1276-1281
Author(s):  
Yan Li Song ◽  
Ran Tao ◽  
An Na Wang

Towards the problem of power quality disturbance detecting and localization in the power system, this paper proposed a new method based on improved TT-transform. Amplitude’s mutation in maximum element sequence of the TT- module matrix’s row is detected to locate beginning and ending time of power quality disturbances. This method can not only detect single power quality disturbance, but also detect composite disturbance accurately. The simulation results show that the method proposed can accurately detect the common power quality disturbance signal.


Sign in / Sign up

Export Citation Format

Share Document