Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid

2013 ◽  
Vol 188 ◽  
pp. 405-410 ◽  
Author(s):  
Guiyun Xu ◽  
Beibei Li ◽  
Xinyan Tracy Cui ◽  
Luyang Ling ◽  
Xiliang Luo
2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


Sign in / Sign up

Export Citation Format

Share Document