Manure-based biochar decreases heterotrophic respiration and increases gross nitrification rates in rhizosphere soil

2021 ◽  
Vol 154 ◽  
pp. 108147
Author(s):  
Prem Pokharel ◽  
Le Qi ◽  
Scott X. Chang
2016 ◽  
Vol 1 (01) ◽  
Author(s):  
Vemavarapu Bhaskara Rao ◽  
Kandlagunta Guru Prasad ◽  
Krishna Naragani ◽  
Vijayalakshmi Muvva

The air dried rhizosphere soil samples pretreated with calcium carbonate was employed for the isolation of actinomycete strains. Serial dilution plate technique was used for the isolation of actinomycetes. A total of 20 actinomycete strains designated as BS1-BS20 were isolated from the rhizosphere of medicinal plant Clitoria ternatea. All the 20 strains were subjected to primary screening for antimicrobial activity. Among the 20 strains screened, 10 strains exhibited high antimicrobial spectrum against Staphylococcus aureus, Escherichia coli and Candida albicans.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


2009 ◽  
Vol 17 (2) ◽  
pp. 318-322
Author(s):  
Kai ZHOU ◽  
Wei-Ming GUO ◽  
Zhi-Fang WANG ◽  
Feng-Ge HAO

2013 ◽  
Vol 38 (2) ◽  
pp. 173-176 ◽  
Author(s):  
Yong-hong HUANG ◽  
Shun LÜ ◽  
Chun-yu LI ◽  
Yue-rong WEI ◽  
Gan-jun YI

2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3438
Author(s):  
Juan Liu ◽  
Xiangwei He ◽  
Jingya Sun ◽  
Yuchao Ma

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


Sign in / Sign up

Export Citation Format

Share Document