Physiological testosterone levels enhance chondrogenic extracellular matrix synthesis by male intervertebral disc cells in vitro, but not by mesenchymal stem cells

2014 ◽  
Vol 14 (3) ◽  
pp. 455-468 ◽  
Author(s):  
Alessandro Bertolo ◽  
Martin Baur ◽  
Niklaus Aebli ◽  
Stephen J. Ferguson ◽  
Jivko Stoyanov
Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1408
Author(s):  
Susumu Horikoshi ◽  
Mikihito Kajiya ◽  
Souta Motoike ◽  
Mai Yoshino ◽  
Shin Morimoto ◽  
...  

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.


Stem Cells ◽  
2007 ◽  
Vol 25 (7) ◽  
pp. 1761-1768 ◽  
Author(s):  
Irina A. Potapova ◽  
Glenn R. Gaudette ◽  
Peter R. Brink ◽  
Richard B. Robinson ◽  
Michael R. Rosen ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and have been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences, there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSC-derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods hMSCs were isolated from bone marrow aspirate, and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the sEVs at 5 × 1010 vesicles/ml concentration for 28 days and compared to control. The pellets were harvested at days 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis, and cytokine secretions. Results The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEV-treated DC pellets compared to control cultures. Further, sEV treatment suppressed secretion of MMP-1 in the DCs. Conclusion hMSC-derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Feng Wang ◽  
Li-ping Nan ◽  
Shi-feng Zhou ◽  
Yang Liu ◽  
Ze-yu Wang ◽  
...  

Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83±227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.


2020 ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background: Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and has been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSCs derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods: hMSCs were isolated from bone marrow aspirate and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the EVs at 5x1010 vesicles/mL concentration for 28 days and compared to control. The pellets were harvested at day 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis and cytokine secretions.Results: The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEVs treated DC pellets compared to control cultures. Further, sEVs treatment suppressed secretion of MMP-1 in the DCs. Conclusion: hMSC derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Author(s):  
Neena Rajan ◽  
Nathaniel Stetson ◽  
Passquale Razzano ◽  
Mitchell Levine ◽  
Daniel Grande ◽  
...  

Human intervertebral disc (IVD) degeneration is accompanied by elevated levels of pro-inflammatory cytokines, particularly IL-1β and TNF-α [1–3]. Cytokine secretion by disc cells increases catabolic breakdown of the tissue, resulting in a positive feedback of disc integrity loss and further inflammation [4–6]. A recent study by our group has shown that severity of degeneration in an injury model can influence the therapeutic effect of cell based repair, such as treatment with mesenchymal stem cells (MSCs) [7]. The goal of this study is to measure the response of MSCs to inflammatory challenge, and to compare this response to that of differentiated disc cells from the nucleus pulposus (NP), annulus fibrosis (AF) and end plate (EP). In this study, we investigated the effects of lipopolysaccharide (LPS) on intervertebral disc cells and MSCs viability, pro-inflammatory cytokine expression and extracellular matrix (ECM) expression. LPS is an endotoxin that induces strong immune responses in animal tissue and hence widely used as a pre-clinical model of inflammation. This approach provides an opportunity to study broad aspects of the physiological inflammatory process observed in degenerative disc disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Jia ◽  
Shan-zheng Wang ◽  
Liang-yu Ma ◽  
Jia-bin Yu ◽  
Yu-dong Guo ◽  
...  

Background. Platelet-rich plasma (PRP) is a promising strategy for intervertebral disc degeneration. However, the potential harmful effects of leukocytes in PRP on nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have seldom been studied. This study aimed at comparatively evaluating effects of pure platelet-rich plasma (P-PRP) and leukocyte-containing platelet-rich plasma (L-PRP) on rabbit NPMSCs in vitro. Methods. NPMSCs isolated from rabbit NP tissues were treated with L-PRP or P-PRP in vitro, and then cell proliferation and expression of stem cell markers, proinflammatory cytokines (TNF-α, IL-1β), production of ECM (extracellular matrix-related protein), and NF-κB p65 protein were validated by CCK-8 assay, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and western blot respectively. Results. NPMSCs differentiate into nucleus pulposus-like cells after treatment of PRPs (P-PRP and L-PRP), and NPMSCs exhibited maximum proliferation at a 10% PRP dose. L-PRP had observably higher concentration of leukocytes, TNF-α, and IL-1β than P-PRP. Furthermore, compared to P-PRP, L-PRP induced the differentiated NPMSCs to upregulate the expression of TNF-α and IL-1β, enhanced activation of the NF-κB pathway, increased the expression of MMP-1 and MMP-13, and produced less ECM in differentiated NPMSCs. Conclusions. Both P-PRP and L-PRP can induce the proliferation and NP-differentiation of NPMSCs. Compared to L-PRP, P-PRP can avoid the activation of the NF-κB pathway, thus reducing the inflammatory and catabolic responses.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Elise Aasebø ◽  
Even Birkeland ◽  
Frode Selheim ◽  
Frode Berven ◽  
Annette K. Brenner ◽  
...  

Mesenchymal stem cells (MSCs) and osteoblasts are bone marrow stromal cells that contribute to the formation of stem cell niches and support normal hematopoiesis, leukemogenesis and development of metastases from distant cancers. This support is mediated through cell–cell contact, release of soluble mediators and formation of extracellular matrix. By using a proteomic approach, we characterized the protein release by in vitro cultured human MSCs (10 donors) and osteoblasts (nine donors). We identified 1379 molecules released by these cells, including 340 proteins belonging to the GO-term Extracellular matrix. Both cell types released a wide range of functionally heterogeneous proteins including extracellular matrix molecules (especially collagens), several enzymes and especially proteases, cytokines and soluble adhesion molecules, but also several intracellular molecules including chaperones, cytoplasmic mediators, histones and non-histone nuclear molecules. The levels of most proteins did not differ between MSCs and osteoblasts, but 82 proteins were more abundant for MSC (especially extracellular matrix proteins and proteases) and 36 proteins more abundant for osteoblasts. Finally, a large number of exosomal proteins were identified. To conclude, MSCs and osteoblasts show extracellular release of a wide range of functionally diverse proteins, including several extracellular matrix molecules known to support cancer progression (e.g., metastases from distant tumors, increased relapse risk for hematological malignancies), and the large number of identified exosomal proteins suggests that exocytosis is an important mechanism of protein release.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiafeng Lu ◽  
Zhenxing Liu ◽  
Mingkai Shu ◽  
Liya Zhang ◽  
Wenjuan Xia ◽  
...  

Abstract Background The side effects of busulfan on male reproduction are serious, so fertility preservation in children undergoing busulfan treatment is a major worldwide concern. Human placental mesenchymal stem cells (hPMSCs) have advantages such as stable proliferation and lower immunogenicity that make them an ideal material for stimulating tissue repair, especially restoring spermatogenesis. The protective effects of hPMSCs in busulfan-induced Sertoli cells and in busulfan-treated mouse testes have not been determined. Our study aimed to elaborate the protective effect and potential mechanisms of hPMSCs in busulfan-treated testes and Sertoli cells. Methods First, we developed a mouse model of busulfan-induced testicular toxicity in vivo and a mouse Sertoli cell line treated with busulfan in vitro to assess the protective effect and mechanisms of hPMSC treatment on spermatogenesis. Then, the length, width, and weight of the testes were monitored using Vernier calipers. Furthermore, at 1 week and 4 weeks after the transplantation of hPMSCs, histological sections of testes were stained with hematoxylin-eosin, and the seminiferous tubules with fluid-filled cavities were counted. Through ELISA analysis, testosterone levels and MDA, SOD, LDH, and CAT activities, which are associated with ROS, were detected. Markers of ROS, proliferation (Ki67), and apoptosis (Annexin V) were evaluated by FACS. Next, the fluorescence intensity of proliferation markers (BrdU and SCP3), an antioxidant marker (SIRT1), a spermatogenesis marker (PLZF), and autophagy-related genes (P62 and LC3AB) were detected by fluorescence microscopy. The mRNA expression of γ-H2AX, BRCA1, PARP1, PCNA, Ki67, P62, and LC3 was determined by qRT-PCR. Results hPMSCs restored disrupted spermatogenesis, promoted improved semen parameters, and increased testosterone levels, testis size, and autophagy in the testis toxicity mouse model induced by busulfan. hPMSCs suppressed the apoptosis of Sertoli cells and enhanced their rate of proliferation in vitro. Additionally, hPMSCs protected against oxidative stress and decreased oxidative damage in the testis toxicity mouse model induced by busulfan. Furthermore, hPMSCs increased the expression of proliferation genes (PCNA and KI67) and decreased the mRNA levels of apoptotic genes such as γ-H2AX, BRCA1, and PARP1. Conclusions This research showed that hPMSC injection ameliorated busulfan-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. The present study offers an idea for a new method for clinical treatment of chemotherapy-induced spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document