scholarly journals Capsizing accident scenario model for small fishing trawler

2022 ◽  
Vol 145 ◽  
pp. 105500
Author(s):  
Francis Obeng ◽  
Vindex Domeh ◽  
Faisal Khan ◽  
Neil Bose ◽  
Elizabeth Sanli
2015 ◽  
Vol 166 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Brigitte Rohner ◽  
Esther Thürig

Development of climate-dependent growth functions for the scenario model “Massimo” Tree growth is substantially influenced by climatic factors. In the face of climate change, climate effects should therefore be included in estimations of Switzerland's future forest productivity. In order to include climate effects in the growth functions of the “Massimo” model, which is typically applied to project forest resources in Switzerland, we statistically modelled climate effects on tree growth representatively for Switzerland by simultaneously considering further growth-influencing factors. First, we used tree ring data to evaluate how climate variables should be defined. This analyses showed that for modelling multi-year tree growth we should use averages of whole-year variables. Second, we fitted nonlinear mixed-effects models separately for the main tree species to individual-tree growth data from the Swiss National Forest Inventory. In these models, we combined climate variables defined according to the results of the tree ring study with various further variables that characterize sites, stands and individual trees. The quantified effects were generally plausible and explained convincingly the physiological differences between the species. The statistical growth models for the main tree species will now be included in the forest scenario model “Massimo”. This will allow for founded analyses of scenarios which assume changing climatic conditions.


2011 ◽  
Vol 52 (2) ◽  
pp. 12-16
Author(s):  
Jutta Geldermann ◽  
Valentin Bertsch ◽  
Florian Gering

Komplexe Entscheidungssituationen, wie sie beispielsweise im Notfall- und Sanierungsmanagement nach einem kerntechnischen Störfall auftreten, erfordern eine Berücksichtigung technischer, ökonomischer, ökologischer, sozio-psychologischer und politischer Aspekte. Ansätze der Mehrzielentscheidungsunterstützung ermöglichen eine aggregierte Betrachtung verschiedener Aspekte, das Miteinbeziehen der subjektiven Präferenzen der Entscheidungsträger und tragen zu mehr Transparenz und Nachvollziehbarkeit von Entscheidungsprozessen bei. Dieser Beitrag befasst sich schwerpunktmäßig mit der Betrachtung von Unsicherheiten in solchen Entscheidungsprozessen. Zur Modellierung, Fortpflanzung und Visualisierung von Unsicherheiten wird ein Monte-Carlo-Ansatz vorgestellt und beispielhaft auf Daten eines fiktiven nuklearen Unfallszenarios angewendet. Generell ist der Ansatz jedoch auf allgemeine komplexe Entscheidungssituationen erweiterbar, insbesondere auf den Bereich sonstiger industrieller Notfälle. Eine interessante Fragestellung besteht weiterhin in der Untersuchung der Auswirkungen industrieller Notfälle auf die gesamte Wertschöpfungskette. Der erste Teil des Aufsatzes wurde bereits in Der Betriebswirt 1/2011 veröffentlicht, der letzte Teil folgt in Ausgabe 3/2011. Complex decision situations, such as in nuclear emergency and remediation management, require the consideration of technical, economic, ecological, socio-psychological and political aspects. Approaches for Multi-Criteria Decision Analysis (MCDA) help to take into account various incommensurable aspects and subjective preferences of the decision makers and thus contribute to transparency and traceability of decision processes. This paper focuses on the handling of uncertainties in such decision processes. Monte Carlo approaches can be used to model, propagate and finally visualise the uncertainties, as a case study on a hypothetical radiological accident scenario illustrates. In general, the presented approach can be adopted for any complex decision situation, especially for industrial emergencies. Further research would be necessary for the analysis of their consequences for entire supply chains. Keywords: risiko und notfallmanagement unter unsicherheit


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


1995 ◽  
Vol 154 (2) ◽  
pp. 119-132 ◽  
Author(s):  
M. di Marzo ◽  
K. Almenas ◽  
S. Gopalnarayanan

2019 ◽  
Vol 18 (1) ◽  
pp. 40-54
Author(s):  
Mohamed Seddik Hellas ◽  
Rachid Chaib ◽  
Ion Verzea

Purpose Nowadays, artificial intelligence computational methods, such as knowledge-based systems, neural networks, genetic algorithms and fuzzy logic, have been increasingly applied to several industrial research studies, the purpose of this paper is to study the contribution of fuzzy and possibilistic techniques to quantitative risk analysis (QRA) in the presence of imperfect knowledge about the occurrence and consequences of accidental phenomena. Design/methodology/approach To solve the problem of uncertainties related to the elements of the accident scenario such as the frequency and severity of the consequences, the authors used fuzzy logic. Using this type of analysis, it is possible to visualize the contours of the dead or fuzzy injury by fireball thermal effect (first- and second-degree burn, death) and lesions caused by vapor cloud explosion overpressure (lung damage, eardrum rupture, head impact, whole-body displacement). The frequency and severity of fuzzy results are calculated by extended multiplication using the alpha-cuts method. Findings This research project aims to reflect the real situation in the in Amenas industrial area (SONATRACH company), specifically the liquefied petroleum gas storage tank On-Spec 05-V-411A, to deal with this type of risk. Using this analysis allows us to estimate the fuzzy individual risk using the approach of fuzzy logic to treating this uncertainty in the parameter information of accident scenarios. This index individuel risk (IR) was evaluated against the criterion of acceptability and then used for decision-making in the field of industrial risk analysis and evaluation. Originality/value The originality of the work is to identify the weak points of the classical QRA to solve the problem of the uncertainties related to the elements of the accident scenario such as the frequency and severity of the consequences to visualize the fuzzy risk contours. On the one hand and the development of software to calculate the probability of death by the overpressure effect and classify the most sensitive organs on the other hand. Given the importance of this study, it can be generalized for similar sites in the region.


Sign in / Sign up

Export Citation Format

Share Document