Estimation of coefficient of variation for structural analysis: The correlation interval approach

2021 ◽  
Vol 92 ◽  
pp. 102101
Author(s):  
Lukáš Novák ◽  
Drahomír Novák
Author(s):  
Franck Massa ◽  
Karine Mourier-Ruffin ◽  
Bertrand Lallemand ◽  
Thierry Tison

Finite element simulations are well established in industry and are an essential part of the design phase for mechanical structures. Although numerical models have become more and more complex and realistic, the results can still be relatively far from observed reality. Nowadays, use of deterministic analysis is limited due to the existence of several kinds of imperfections in the different steps of the structural design process. This paper presents a general non-probabilistic methodology that uses interval sets to propagate the imperfections. This methodology incorporates sensitivity analysis and reanalysis techniques. Numerical interval results for a test case were compared to experimental interval results to demonstrate the capabilities of the proposed methodology.


2008 ◽  
Vol 17 (5-7) ◽  
pp. 869-880 ◽  
Author(s):  
Franck Massa ◽  
Karine Mourier-Ruffin ◽  
Bertrand Lallemand ◽  
Thierry Tison

1990 ◽  
Vol 6 (1) ◽  
pp. 81-103 ◽  
Author(s):  
David J. Elton ◽  
Eugene A. Marciano

The historic and continuing seismicity in the southeastern U.S. indicate the seismic threat to the population. However, little is known about the engineering characteristics of eastern U.S. earthquakes because there are no strong motion recordings of them. In particular, the peak ground acceleration, needed for structural design, is not available except through correlations with western U.S. earthquakes or MMI data of unknown uncertainty. This paper estimates the peak ground acceleration experienced by St. Michael's Church during the 1886 Charleston, SC, event based on conventional and probabilistic structural analysis. The 1886 event, rated as MMI X and magnitude 7, is the only historic strong motion event greater than mb = 5 that affected Charleston. The analysis concluded that the peak ground acceleration for the 1886 event was 0.33g. The coefficient of variation of this acceleration was 24%, remarkably small when considering the uncertainty in the input parameters.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


1985 ◽  
Vol 46 (2) ◽  
pp. 235-241 ◽  
Author(s):  
F. Lançon ◽  
L. Billard ◽  
J. Laugier ◽  
A. Chamberod

Sign in / Sign up

Export Citation Format

Share Document