scholarly journals Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

2012 ◽  
Vol 264 (3) ◽  
pp. 387-394 ◽  
Author(s):  
Mitchell R. McGill ◽  
C. David Williams ◽  
Yuchao Xie ◽  
Anup Ramachandran ◽  
Hartmut Jaeschke
HPB Surgery ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Christoph Czerny ◽  
Andaleb Kholmukhamedov ◽  
Tom P. Theruvath ◽  
Eduardo N. Maldonado ◽  
Venkat K. Ramshesh ◽  
...  

Patients that survive hemorrhage and resuscitation (H/R) may develop a systemic inflammatory response syndrome (SIRS) that leads to dysfunction of vital organs (multiple organ dysfunction syndrome, MODS). SIRS and MODS may involve mitochondrial dysfunction. Under pentobarbital anesthesia, C57BL6 mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer’s solution containing minocycline, tetracycline (both 10 mg/kg body weight) or vehicle. Serum alanine aminotransferase (ALT), necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R with vehicle or tetracycline, ALT increased to 4538 U/L and 3999 U/L, respectively, which minocycline decreased to 1763 U/L (P<0.01). Necrosis and TUNEL also decreased from 24.5% and 17.7 cells/field, respectively, after vehicle to 8.3% and 8.7 cells/field after minocycline. Tetracycline failed to decrease necrosis (23.3%) but decreased apoptosis to 9 cells/field (P<0.05). Minocycline and tetracycline also decreased caspase-3 activity in liver homogenates. Minocycline but not tetracycline decreased lipid peroxidation after resuscitation by 70% (P<0.05). Intravital microscopy showed that minocycline preserved mitochondrial polarization after H/R (P<0.05). In conclusion, minocycline decreases liver injury and oxidative stress after H/R by preventing mitochondrial dysfunction.


Hepatology ◽  
2009 ◽  
Vol 51 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Sathish Kumar Natarajan ◽  
Kavitha R. Thangaraj ◽  
C. E. Eapen ◽  
Anup Ramachandran ◽  
Ashis Mukhopadhya ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239625
Author(s):  
Prasanna M. Chandramouleeswaran ◽  
Manti Guha ◽  
Masataka Shimonosono ◽  
Kelly A. Whelan ◽  
Hisatsugu Maekawa ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5851
Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonamine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2008 ◽  
Vol 40 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Carlos A. O. Sigolo ◽  
Paolo Di Mascio ◽  
Alicia J. Kowaltowski ◽  
Camila C. M. Garcia ◽  
Marisa H. G. Medeiros

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Anna Dikalova ◽  
Vladimir Mayorov ◽  
Liang Xiao ◽  
Alexander Panov ◽  
Venkataraman Amarnath ◽  
...  

Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products isolevuglandins (isoLGs) and that scavenging of mitochondrial isoLG improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isoLG-protein adducts in human patients with essential hypertension and angiotensin II mouse model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isoLG was tested by the novel mitochondria-targeted isoLG scavenger, mito2HOBA. Mitochondrial isoLG in arterioles isolated from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects improved deacetylation of a key mitochondrial antioxidant, superoxide dismutase 2 (SOD2). In human aortic endothelial cells, mito2HOBA diminished mitochondrial superoxide and inhibited cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In angiotensin II-infused mice, mito2HOBA prevented accumulation of mitochondrial isoLG-protein adducts, improved Sirt3 mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in angiotensin II-infused mice. These data support the role of mitochondrial isoLGs in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isoLGs may have therapeutic potential in treatment of vascular dysfunction and hypertension.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Claudia Isabel García-Berumen ◽  
Omar Ortiz-Avila ◽  
Manuel Alejandro Vargas-Vargas ◽  
Bricia A. del Rosario-Tamayo ◽  
Clotilde Guajardo-López ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document